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PREFACE

This report on the water resources and development potential of Spring Valley is one of a series
of reports on hydrographic basins in eastern and southern Nevada, prepared by the Las Vegas
Valley Water District as part of the District’s Cooperative Water Project. Kay Brothers and
James V. Tracy developed the ground-water flow model and co-authored the report. Thomas
S. Buqo performed detailed evaluations of the available data and prepared selected portions of
the report. Alan J. Bernholtz performed water quality sampling and prepared the chemistry
section. Chiuwen Ray prepared all the report figures. Richard Barrett performed the satellite
imagery analysis to arrive at irrigated acreages. Information used in performing this work was
provided by the Nevada State Engineer’s office, the U.S. Geological Survey, Summit
Engineering, Inc., and the U.S. Air Force. Additional information and technical assistance was
provided by the staff of the Research Department of the Las Vegas Valley Water District, under
the direction of Terry Katzer, Director.
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INTRODUCTION

In October 1989, the Las Vegas Valley Water District (District) filed nineteen applications to
obtain ground-water rights from Spring Valley in White Pine and Lincoln Counties, Nevada.
Since the time of these water right filings, the District has conducted extensive investigations of
Spring Valley and adjacent areas including the collection of basic hydrologic data, a water rights
inventory, the synthesis of all published and agency information on the water resources of the
area, and the development of conceptual and numerical models of the valleys. This report
details the hydrologic assessments of Spring Valley that were conducted, and the steady-state
ground-water flow model developed to represent the aquifer systems of the basin.

Background

Spring Valley is a large basin located about 300 miles north of Las Vegas, Nevada (Figure 1).
Most of Spring Valley is situated in White Pine County; however, the southernmost portion is
located in northern Lincoln County. More than 120 production, test, and observation wells have
been drilled in the valley; data concerning these wells provides much information about the
alluvial aquifer. On the basis of the geology of the basin, the hydrogeology of neighboring
basins and limited test drilling performed as part of the U.S. Air Force’s MX Missile water
resources program, it is known that the regional carbonate aquifer underlies Spring Valley.

To assist its efforts in understanding the water resources of Spring Valley, the District developed
a numerical model of the ground-water flow regime of the basin. A numerical model is a
computer code which translates the mechanics of ground-water flow through the earth through
a series of mathematical equations. By coupling the available information on the basin (and
similar valleys in Nevada) with the predictive capabilities of the model, it is possible to estimate
the response of the ground water to the proposed water withdrawals by the District.

The development of a ground-water flow model for Spring Valley serves two important
purposes. First, it is a useful planning tool in developing well field designs by allowing water
supply design experts to simulate the efficiency of different design alternatives; secondly, it
allows planners to simulate the potential effects of the water withdrawals, if any, on neighboring
water users, and the environment.

Both beneficial and negative impacts may result from ground-water withdrawals from the valley-
fill deposits and/or the regional carbonate aquifer in the arid basins of Nevada. The benefits
derived from the application of currently unused ground-water to beneficial use is, of course,
the primary positive impact. The economic impact of large-scale ground-water development
programs, such as that proposed by the District, is likely to be appreciable and the project is
likely to result in significant short-term and long-term economic benefits. The proposed
program will require the cooperative efforts of large teams of scientists, engineers, and water
planners, and the services of the water well and construction industries.
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Beside the favorable economic impacts expected to result from the proposed development of
ground water in Spring Valley, negative impacts can occur. The primary negative impact of
ground-water withdrawals is the lowering of ground-water levels in the vicinity of the production
wells; this lowering of water levels is commonly referred to as drawdown. If the long-term
drawdown near a pumping well, or a wellfield in any given valley, is significant, then the
direction and rate of ground-water flow can be altered and potentially may result in:

Increased pumping lifts and costs;
Reductions in spring-flow rates;
Reductions in surface-water flows; and
Degradation of water quality.

The magnitude and significance of these impacts depends largely upon the overall hydrologic
setting of the basin where the withdrawals occur. In remote, undeveloped basins with no surface
water or large springs, the drawdown that will result from ground-water development may not
result in significant adverse impacts within the valley. In other instances, the presence of
sensitive environments in a valley may be adversely impacted as a result of the same amount of
drawdown. Examples of sensitive environments in Nevada include: 1) wetland areas that
provide valuable habitat for many types of wildlife; 2) surface water flows and their associated
riparian habitats; 3) springs that either support wildlife or have been developed for ranching,
mining, quasi-municipal, or domestic uses; and 4) areas where ground water provides the sole
source of drinking water for a community.

There are large areas of Spring Valley that contain seasonal wetlands. These areas receive a
large amount of runoff from the snow melt over the Schell Creek and Snake ranges. This water
ponds in the lowland areas and supports extensive stands of plants, primarily greasewood,
saltgrass, and rabbitbrush. Although none of the springs in Spring Valley have been classified
as regional, there are hundreds of individual springs and seeps. The USGS has mapped the
locations of seven springs with discharge rates of more than 1000 gallons per minute (slightly
more than 3 cfs). There are no wildlife management areas in the basin; a portion of Great Basin
National Park is in Spring Valley in the upland areas of the Snake Range south of U.S. Highway
50.

Because many of the valleys in central, eastern, and southern Nevada are hydraulically linked,
via the regional carbonate aquifer, the drawdown that results from the development of ground
water in one valley can impact the environment of another valley. Thus, the development of a
numerical model of ground-water flow to simulate the impacts of pumping must take into
account the environment in peripheral valleys as well as the valley actually being modelled. The
District is in the process of preparing a computer model to evaluate these potential regional
impacts.

Spring Valley is potentially in hydraulic communication with Tippett Valley to the north and is
in direct communication with Hamlin Valley to the south. Along with several basins in western
Utah, these valleys comprise a large regional flow system known as the Great Salt Lake Desert



Flow System (Harrill, et al., 1988). Withdrawing water from Spring Valley could potentially
have effects on downgradient basins and any ground-water development will be monitored.

The use of numerical methods to simulate water withdrawals in Spring Valley provides a tool
for predicting the effects that would be expected to result from potential development. Recently,
the U.S. Geological Survey (USGS) has reported the findings of a cooperative study of the water
resources potential of the carbonate aquifer conducted in cooperation with the U.S. Bureau of
Reclamation, state and local agencies, including the District (Dettinger, 1989). This report
recommends the effective use of computer models for predicting the site-specific effects of water
withdrawals from the carbonate aquifer. The report concluded that increased confidence in such
predictions can be achieved through a staged approach to development coupled with adequate
monitoring and interpretation. The development of a computer model of the steady-state ground-
water flow regime in Spring Valley, performed as part of this investigation, represents one of
the first steps in implementing such a staged approach.

The steady-state ground-water model, described in this report, provides a preliminary
representation of the aquifer system based upon the information available at this time. As
additional data become available through District efforts, the model of the ground-water flow
regime for Spring Valley can be updated accordingly to provide a more refined representation
of the hydrologic system.

Purpose and Scope

The purpose of this project is twofold: 1) to define the hydrologic conditions of Spring Valley,
and 2) to develop a calibrated steady-state ground-water flow model of the valley. The specific
objectives of these investigations were to:

Collect land use data in the valleys; _

Compile and review published reports and unpublished data on the valley;
Interpret the available data and determine the characteristics of the valley; and
Prepare a computer model to simulate steady-state ground-water flow in the valley.

To achieve these objectives, a detailed investigation of the hydrologic conditions of Spring
Valley was conducted. The scope of work included a review of all available published and
unpublished data, the evaluation of the occurrence and movement of ground water and water
chemistry, and the development of conceptual and steady-state numerical models of the
hydrogeologic regime of the valley. The basin characterization information and steady-state flow
model discussed in this report will be used by the District to develop a transient, regional model
including the Spring Valley ground-water regime.
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Location and Physiographic Setting

Spring Valley is within the Great Basin Physiographic Region as defined by Fenneman (1931).
The location of the valley and its general physiographic setting are shown in Figure 2 and 2A
are discussed below.

Spring Valley is located between the Schell Creek Range on the west, the Kern Mountains, Red
Hills and Antelope Range on the north and northeast, the Snake Range on the east, and the
Fortification Range, Limestone Hills, and Wilson Creek Range on the south. The basin is
topographically closed i.e., there is no surface water drainage out of the basin. To the north,
the Spring Valley ground-water regime may be in direct hydraulic communication with Tippett
Valley as hypothesized by Rush et al. (1971) and Harrill et al. (1988). Along its southeastern
boundary (in the Limestone Hills area), the ground water of Spring Valley is in direct hydraulic
communication with Hamlin and Snake Valleys.

Spring Valley is approximately 115 miles along its central axis, a maximum of 25 miles wide,
and covers 1,661 square miles (Scott, et al., 1971). The valley floor averages about 5,700 feet
above mean sea level (AMSL) and ranges in elevation from more than 6500 feet AMSL high
on the alluvial fans to about 5,550 feet AMSL at Yelland Dry Lake. A depression occurs in the
north-central part of the basin from the Red Hills to south of Yelland Dry Lake.

On the northeast Spring Valley is bounded by the Antelope Range, which rise generally to
elevations over 8,200 feet AMSL with a maximum of about 9,380 feet AMSL at Baldy Peak.
East of Becky Peak, between the northernmost part of the Schell Creek Range and Antelope
Range, a high (7,200 ft AMSL) alluvial divide separates Spring Valley from Steptoe Valley.
Southeast of the Antelope Range, Spring Valley is separated from Tippett Valley by another
alluvial divide with an elevation of about 6,070 feet AMSL and the Red Hills, which rise to
about 6,900 feet AMSL. Further to the south, the Kern Mountains have considerable area above
8000 feet AMSL with a maximum elevation of about 9,630 feet AMSL. Another alluvial divide
separates Spring Valley from Snake Valley between the Kern Mountains and the Snake Range
at an elevation of about 6,780 feet AMSL.

The east and west bounding Snake Range and Schell Creek Range are the dominate features
bounding Spring Valley. On the east, the Snake Range rises to maximum elevations of 13,063
feet AMSL at Wheeler Peak and 12,050 feet AMSL at Mount Moriah. Similarly, on the west,
Spring Valley is bounded by another high mountain massif, the Schell Creek Range, with
maximum elevations of 11,883 fect AMSL at North Schell Peak and 11,765 feet AMSL at South
Schell Peak with numerous lesser peaks of more than 10,000 feet AMSL.

On the southeast, a narrow topographic divide at Lake Valley Summit separates Spring Valley
from Lake Valley. This divide, at about 6,150 feet AMSL, separates the Schell Creek Range
from the Fortification Range. The peaks in the Fortification Range are lower, ranging from
about 7,500 to 8,500 feet. On the extreme south, Spring Valley is bounded by the northern part
of the Wilson Creek Range with maximum elevations of more than 7,800 fect AMSL at Atlanta
Creek and Rosencrans Peak. Finally, on the extreme southeast, an alluvial divide and the
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Figure 2. —— Physiography and location of Spring Valley (Northern Half).
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Limestone Hills, with a maximum elevation of about 7,660 feet AMSL, separate Spring Valley
from Snake Valley. The alluvial divide is in The Troughs area at an elevation of about 6,050
feet AMSL.

The physiography of Spring Valley is typical of other valleys in Nevada; mountains bound the
valley on the east and west and alluvial fans radiate from the major mountain watersheds,
forming a somewhat continuous bajada. On the valley floor, the major features are the
numerous washes that drain the Snake Range and Schell Creek Range and the Pleistocene lake
bed in the north-central part of the valley.

Availability of Data

Spring Valley are located in a remote and largely unpopulated portion of White Pine and Lincoln
Counties, and only reconnaissance level evaluations of the water resources of the area are
available. Records are available for more than 120 production, test, and observation wells that
have been drilled in Spring Valley. Other available information includes published reports by
the Nevada Bureau of Mines and Geology, the USGS, and the Desert Research Institute. In the
late 1970s and early 1980s, the valley was also extensively investigated by the U.S. Air Force
as part of their MX Water Resources Program. As a result of these previous investigations and
the development that has occurred in the valley, the hydrologic conditions have been relatively
well defined. Regional data from adjacent valleys are also available to supplement the existing
valley-specific data.

The distribution of data points in the valley is quite good with no large areas lacking control.
Table 1 provides summary data from the USGS data base and Bunch and Harrill (1984) for
water level measurements in the valley for 59 wells. These wells were selected as representative
of the overall ground water system on the basis of location and the date of the last water level
measurement. Except for the northernmost part of Spring Valley, there are recent (1983 or
later) water level data available for most of the valley floor area with older data available for
wells located in upland areas. : :

Large scale maps (1:100,000 or larger) and small scale imagery also provide data useful in
interpreting the hydrologic conditions of Spring Valley. Topographic maps of the basin show
the locations of hundreds of individual springs. These springs provide additional information
on ground-water elevations and movement, especially in the upland areas where wells are
lacking. Remote sensing imagery is also available that allows evaluations of key ground-water
indicators especially vegetation.

The valley-specific data was supplemented by regional data. Previous investigations in
neighboring valleys have generated a data base of regional information which can be used to help
formulate a ground-water model for Spring Valley. These data provide specific measures or
estimates of the ground-water conditions at selected points in time and values for key hydrologic
parameters. Several of the wells in adjacent valleys that were drilled as part of the Air Force’s
MX investigations extend through the valley-fill into the underlying carbonate rocks.
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Table 1.--Selected water level data in Spring Valley, Nevada.

. NEVADA

ID LOCATION LAN D ELEV. DEPTH 'TO WATER WATl_ER ELEV. DATE
NUMBER (in ft. AMSL) (in f.) (in ft.) MEASURED
1 8N-68E 23BACY 6180 418.5 5762 07/15/64
2 10N-67E 7BA 5800 84 5716 07/01/80
3 11N-66E 24BDA 5771 14 5757 03/08/90
4 11N-66E 1AAB 5790 2.5 5788 03/08/90
5 11IN-66E 23AB 5840 46.77 5793 09/29/91
6 11N-66E 35DBA 5785% 2.52 5782 03/09/90
7 9N-68E 30AAA 5990 225.7 5765 03/08/90
8 10N-68E 31CD 5920 119.59 5800 09/28/91
9 11N-68E 19CDC 5920 94.83 5825 09/28/91
10 11N-68E 31CDC 5850 70.14 5780 03/08/90
11 10N-67E 16AAB 5825 40.1 5785 03/08/90
12 10N-67E 22AA 5920 65.58 5854 09/29/91
13 10N-67E 23ACB 5868 96.44 5772 03/08/90
14 10N-67E 26BB 5920 95.49 5825 09/29/91
15 11N-67E 13B 5800 7 5793 1935
16 17N-67E 28A 5560 22.1 5538 02/18/49
17 20N-67E 9BAY 5780 182.5 5598 04/22/60
18 16N-67E 18A 5580 11.2 5569 08/15/49
19 18N-66E 1B 5600 - : 20 5580 07/11/53
20 17N-68E 7AB 5560 19.82 5540 03/06/90
21 16N-67E 3AAA 5585 4.1 5581 03/07/90
22 16N-67E 27DAD 5600 7.7 5592 03/06/90
23 18N-67E 1CCA 5588 35.'% 5552 03/06/90
24 19N-67E 13AAA 5620 46.37 5574 03/06/90
25 20N-67E 26ABB 5706 115.4 5591 03/06/90
26 12N-67E 8A 5750 20 5730 01/01/35
27 13N-67E 8ACA 5770 13.76 5756 07/03/90
28 13N-67E 31DDC 5792 29.2 5763 03/07/90
29 15N-66E 13D 5760 13.62 5746 12/06/91
30 16N-66E 36DBA 5860 215.68 5644 03/07/90

AR AR AR AR AR AR N A AR AR A AR A SR AR A A AR AR S SR AR AR SR AR AN AR AR e R o W e N o R AR o R e Ko W o Wa R o W oW a R oW AR AR oW o oK o X 3 §
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Table 1.--Selected water level data in Spring Valley, Nevada (Continued).

ID LOCATION LAN D ELEV. DEPTH .TO WATER WATER ELEV. DATE
NUMBER (in ft. AMSL) (in ft.) (in f.) MEASURED
31 19N-66E 14AB 5700 43.04 5657 03/07/90
32 13N-67E 17DBA 5780 2.04 5778 04/20/83
33 13N-67E 18DCB 5850 51.03 5799 07/18/91
34 14N-66E 24AAB 5838 23.27 5815 03/06/90
35 14N-66E 24BDD 5840 35.94 5804 09/28/91
36 14N-66E 2SBAD 5838 19.18 5819 03/06/90
37 15N-66E 2SDAD 5840 31.44 5809 03/07/90
38 12N-67E 27B 5750 13 5737 10/13/55
39 14N-67E 22CCC 5790 56.6 5733 03/07/90
40 15N-67E 2DAC 57687 150.44 5618 04/21/83
41 15N-67E 26CA 5680 35.04 5645 09/28/91
42 12N-67E 2ACB 5780 -21.3 5801 03/07/90
43 12N-67E 12CAA 5880 29.15 5851 03/07/90
44 12N-67E 13A 5900 8 5892 10/10/55
45 12N-67E 24BBB 5780 -11.4 5791 04/20/83
46 12N-67E 24CDD 5845 21.35 5824 03/08/90
47 13N-67E 15CBB 5860 83.64 5776 04/20/83
48 13N-67E 15CDA1 5880 103.37 5777 04/20/83
49 13N-67E 22ADB 5860 72.21 5788 04/20/83
50 13N-67E 26BAD 5860 72.82 5787 03/07/90 -
51 13N-67E 33DDA 5770 14 5769 04/19/83
52 13N-67E 34AAA 5810 2.25 5808 11/09/83
53 13N-66E 25A 5950 14.3 5936 09/27/60
54 21N-66E 4B 6076> 16.68 6059 04/21/83
55 23N-66E 19A 6400 20 5380 08/19/49
56 23N-66E 31AB 6400 19.98 6380 04/21/83
57 23N-65E 10D 6685 65 6620 04/22/60
58 23N-66E 7C 6480 ) 158 | . 6464 08/19/49

1) location changed from USGS data base to location found in USGS 1:100,000 map
2) elevation corrected based on USGS 7.5” quad




The primary source of data for Spring Valley is a reconnaissance report authored by Rush and
Kazmi (1965). Investigators of the regional flow system and adjacent valleys have included
Ertec Western (1981); Thomas, et al. (1986); Harrill, et al. (1988); Kirk and Campana (1988);
and Dettinger (1989). The sources of recent data available for the two valleys include: 1) details
on water well construction from Well Drillers Reports filed with the Nevada State Engineer
Office; 2) water level, spring discharge, and water chemistry data and the results of aquifer tests
from the USGS databases; and 3) the results of aquifer tests and exploratory drilling into the
carbonate aquifer by the Air Force during 1980 and 1981.

Other available data included technical reports of the Nevada Department of Conservation and
Natural Resources, and USGS Professional Papers, Water-Supply Papers, and Open-File
Reports.  Characterizations of the regional setting, provide important information on the
regional carbonate aquifer that is also of use in evaluating conditions in Spring Valley.

Information on the status of water rights in the valley was made available by Summit
Engineering Corporation (SEC) in the form of water right abstracts which are included in
Appendix B. According to SEC, these abstracts were based upon a thorough compilation and
review conducted in 1990 of the public documents available from the Nevada State Engineer
Office, the regulatory authority governing water rights in Nevada.

The conceptual and numerical models of Spring Valley, discussed later in the report, were based
on the available site-specific and regional data discussed in the previous paragraphs, the
observations made during reconnaissance trips to the valley, and the knowledge of the overall

regional ground-water setting.

Methods

In assessing the water resources potential of Spring Valley, and developing a steady-state
numerical model of the ground-water system of the valley, only standard approaches and
procedures were used. In this section, the methods and procedures that were used are identified
and discussed, along with a brief introduction to the selected numerical modelling code.

Data Collection and Compilation

Primary hydrologic data (i.e., new field measurements) were performed as part of this
investigation by the MARK Group, Engineers and Geologists, Inc., and the District. Data from
the USGS Water Resources Division’s databases that included the most recent measurements
available, were provided through the District along with well drillers reports, published reports,
and maps. A literature search was conducted to identify and compile data from available
published sources. '

The locations and data sources were verified by comparing reported or entered data point

locations and parameters with field observations and/or the published source of information.
Spatial data sets (e.g., water levels, water chemistry, and water right locations), were plotted
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at uniform scales and annotated. The resulting maps were inspected for anomalous values and
further verification was performed to resolve any anomalous data points.

Numerical Model Development

The model used to simulate the ground-water regime of Spring Valley is a computer code
prepared by the USGS and referred to as MODFLOW (for "Modular Three-Dimensional Finite-
Difference Ground-Water Flow Model"). The USGS has prepared comprehensive
documentation for this code in one of their series of manuals on techniques of water-resources
investigations (McDonald and Harbaugh, 1988). An overview of the code, a discussion of the
general approach used in modelling, and the specifics of the model developed for the basin are
detailed in the "Ground-Water Flow Model Development"” section.

GENERAL HYDROGEOLOGIC FEATURES

The development of numerical simulations of the proposed District ground-water withdrawals
in Spring Valley requires a thorough understanding of the hydrologic regime of the basin. The
information that is available concerning the valley, and adjacent or similar areas, is used to
develop a conceptual model of the source of water in the valley, its occurrence and flow in the
subsurface, and the relationship between the valley and adjacent areas. In this section, the
regional and valley-specific hydrologic conditions in Spring Valley are described and discussed.

Regional and Basin Hydrogeologic Features

~ Spring Valley is situated in the Alluvial Basins- Ground-Water Region as defined by Heath

(1984). Individual hydrographic basins in this region are characterized by alluvial basins that
are underlain by bedrock, and are separated by the bedrock outcrops in the bounding mountain
ranges, or, in some instances, by lower divides in alluvial terrain.

When ground water flows from one basin to another, the basins are termed a flow system.
Snake Valley comprises a portion of the Great Salt Lake Desert Flow System as defined by
Harrill, et al. (1988). This flow system comprises 21 individual hydrographic basins and
encompasses almost 13,000 square miles. Figure 3 shows the southwestern portion of the Great
Salt Lake Desert Flow System. Much of the primary recharge to this flow system is from the
four basins located wholly, or in part, in Nevada, Tippett Valley, Spring Valley, Snake Valley,
and Hamlin Valley. The discharge from the flow system is to the huge evapotranspiration center
in the Great Salt Lake Desert and limited discharge to the Great Salt Lake.

11
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The overall component of regional ground-water flow is to the south in Spring Valley, then
southeast into Hamlin Valley and then to the northeast through Snake Valley and on to the
eastern portions of the system. Within individual valleys in the flow system, recharge from the
bounding mountain ranges results in a local flow component that generally coincides with the
topography (i.e, from the mountains toward the axis of the valleys or toward playas with
downward vertical hydraulic gradients). These flow directions point to the significance of major
recharge areas such as the Snake Range and Schell Creek Range on regional ground-water flow
patterns. The considerable recharge that occurs over these high mountain masses has resulted
in hydraulic divides. On the west, the hydraulic divide that underlies the Schell Creek Range
separates Spring Valley from the Goshute Valley Flow System.

Spring Valley receives an estimated 2000 acre feet per year of subsurface flow from Tippett
Valley, on the north according to Rush et al. (1971) and Harrill et al. (1988) but this
interpretation is questionable. As is discussed later, the available information suggests that
Spring Valley is more likely hydraulically isolated from inflow from adjacent valleys.

An estimated 4000 acre feet per year of subsurface flow discharges eastward into Hamlin Valley
from the southernmost part of Spring Valley. (Recent USGS publications have included Hamlin
Valley within the Snake Valley hydrographic basin.) This discharge ultimately reaches the
regional discharge areas of the lowlands of Snake Valley, and potentially, the Great Salt Lake
Desert. '

Lithologic and Hydrologic Features

The geologic units present and their ability to store and transmit ground water are important
considerations in developing both conceptual and numerical models of Spring Valley. The type,
thickness and depth, and water-bearing properties of the geologic materials in the valley can be
used to define the overall water resources potential. In this section, the geologic units present
in Spring Valley and their hydraulic properties are described and discussed.

Hydrostratigraphy

The ground-water bearing units of Spring Valley include both valley-fill deposits and
consolidated rocks. For the unconsolidated valley-fill sediments that overly the bedrock in the
valley, three principal units are present. These units are the younger and older alluvial deposits
typical of valleys in the Great Basin and the lacustrine sediments associated with a Pleistocene
lake that was present in the valley.

The stratigraphy of the consolidated rocks of the Snake Range, Schell Creek Range, Antelope
Range, Fortification Range, Wilson Creek Range, and Limestone Hills have been well’
summarized by Hose and Blake (1976) for White Pine County and Tschanz and Pampeyan
(1970) for Lincoln County. Figure 4 shows the general distribution of rocks as mapped by
Plume and Carlton (1988) and the stratigraphic sequences that are present.
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The consolidated rock units present, in descending order, include: 1) Older Tertiary volcanic
rocks (aquifer where fractured); 2) Intrusive rocks (aquitard); 3) the Park City and Arcturus
groups and the Ely Limestone (aquifer); 4) the Chainman Shale (aquitard); 5) the Joanna
Limestone (aquifer); 6) the Pilot Shale (aquitard); 7) a thick sequence comprising the Guilmette
formation and the Simonson, Sevy, Laketown, and Ely Springs dolomites (aquifer), 8) the
Eureka Quartzite, Crystal Peak Dolomite, and Watson Ranch Quartzite (aquitard); 9) the
Pogonip Group and Notch Peak Limestone or Windfall Limestone (aquifer); 10) the Dunderberg
Shale, Lincoln Peak Formation, Pole Canyon Limestone, Pioche shale, Prospect Mountain
Quartzite, and McCoy Group (aquitard) and their stratlgraphrc equ1va1ents this umt is commonly
referred to as the clastic aquitard.

On the eastern side of the basin in the Snake Range, the stratigraphic sequence is . complex. The
northern portion of the range has a low angle fault complex described by Hose and Blake (1976)
as "the most important single structural feature of eastern Nevada". Stewart (1980) referred to
this feature as the Snake Range Thrust Fault. In the area of this decollement feature, rocks of
middle and upper Cambrian age have been faulted over rocks of middle or lower cambrian age.

The lower plate has been extensively intruded by intrusive bodies but the upper plate has not.

The net result of the structural activity in this area is a greatly reduced thickness of mid and late
Paleozoic rocks (Ordov1c1an and younger). B

In the central portions of the Snake Range an outcrop of younger tuffaceous sediments is present
in the vicinity of U.S. Highway 50. These sediments overly a presumably thin sequence of

- Paleozoic rocks including the Lincoln Peak formation and the Pole Canyon Limestone. These
units are underlain by the Pioche Shale, Prospect Mountain Quartzite, and the Precambrian
quartz1tes and siltstones of the McCoy Creek Group :

The southern tlurd of the Snake Range is less disturbed. In this area, a sequence of Paleozoic
rocks of Devonian and younger age is present that correlates with the Pilot Shale and other

underlying units in many areas in east-central Nevada.

On the north and northeast sides of Spring Valley, in the central Antelope Range, the Red Hills,
and the southern Kern Mountains, the Paleozoic sequence is present and has been extensively
faulted. In the Antelope Range and Kern Mountains, the faulting is predominantly low angle
while in the Red Hills, normal faulting predominates. Extensive outcrops of intrusive igneous
rocks of Cretaceous age occur in the Kern Mountains and volcanic rocks of older Tertiary age
outcrop in the southern and northern portions of the Antelope Range

To the west, the stratigraphy of the Schell Creek Range is quite similar to that of the Snake
Range. There are considerable outcrops of older volcanic rocks only in the northern part of the
range. On the eastern slopes in this area and throughout the central and southern portions of the
range, sediments of Paleozoic age are present. Older Paleozoic rocks and Precambrian rocks
predominate in the northern and central part of the Schell Creek Range. These units include a
large north-south trending exposure of the Precambrian McCoy-Creek Group and the overlying
Prospect Mountain Quartzite, Pioche Shale, an unnamed limestone, the Dunderberg Shale, and
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the Windfall Formation. Except for the Windfall Formation, these older sediments comprise a
thick (greater than 5000 ft) aquitard and are collectively referred to by Stewart (1980) as a
metamorphic core complex. It appears that these sediments are a controlling factor on ground-
water movement in the area.

South of T16N, the younger Paleozoic rocks predominate in the Schell Creek Range with
Ordovician through Permian rocks present north of Nevada Highway 6. South of Highway 6
the upper Paleozoic sequence predominates, primarily the Pennsylvanian Ely Limestone and
overlying Arcturus Formation and Rib Hill Sandstone of Permian age. These same units
predominate on the southwest part of Spring Valley in the northern half of the Fortification
Range. In the southern part of this range only volcanic rocks are present, tuffs and associated
volcanic sediments. These same volcanics are present throughout the Wilson Creek Range
except for a small block of Ordovician to Devonian rocks in the northern most part of the range.

Finally, on the southeast, a sequence of Ordovician to Devonian rocks outcrop in the Limestone
Hills. This sequence, comprises predominantly dolomitic rocks that are believed to provide the
avenue for the subsurface flow of ground water from Spring Valley into Hamlin Valley.

Table 2 presents the available data on the regional hydraulic characteristics of rocks and
unconsolidated sediments that are present in Spring Valley. These parameters, and other
features, are discussed for each modelled hydrostratigraphic unit in the following sections.

Valley-Fill Deposits

Based upon the available information, the older alluvium is presumed to be similar,
hydraulically, to the younger valley-fill sediments and, for the purposes of modelling, the older
and younger valley-fill may be considered as one hydrostratigraphic unit. Information
concerning the thickness of the alluvium is not available. The maximum thickness of the valley
fill deposits is probably several thousand feet in the central part of the basin.

The county level geologic maps do not provide good definition of the areal or subsurface extent
of older and younger alluvium or the lacustrine sediments. Rush and Kazmi (1965) describe the
younger alluvium as "unconsolidated, undissected, and relatively undisturbed" and mapped them
only in the lower portions of the valley. These workers mapped older alluvium along the
alluvial fans and noted that these sediments are "unconsolidated or poorly consolidated,
dissected, poorly sorted, and commonly deformed”. The lacustrine sediments, according to
these workers, have an areal extent of about 310 square miles and may be as much as 300 feet
thick. These sediments are underlain by sand and gravel that is presumably older alluvium.

The flow of ground water through the valley-fill aquifer occurs primarily through the interstitial
porosity. However, flow is controlled by the variations in the relative permeabilities of the
interbedded materials. The fine-grained deposits of the lake deposits and similar alluvial
materials, although not tested in Spring Valley, can be expected to exhibit permeabilities several
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Table 2.--Summary of transmissivity and hydraulic conductivity values in Nevada.

Transmissivity (f/day)

Number of
Samples

Aquifer

Maximum Reference

Valley Fill 321 4,478 1,470 7 Winograd and Thordarson (1975)
25,920 259,200 - 2 Burbey and Prudic (1985)
Tuff/Volcanic 6.7 9,090 281 5 Winograd and Thordarson (1975)
259 - - 1 Burbey and Prudic (1985)
Carbonate 174 11,496 1,470 11 Winograd and Thordarson (1975)
11 250,000 2,100 31 Unpublished USGS Data
86 43,200 4,320 5 Burbey and Prudic (1985)

Hydrauiic Conductivity (ft/day)

Number of
Aquifer Minimum Maximum | Median | Samples Reference
'—_—————-—-T—__——d——d_——_——__——_—————_—_—_-_—___———
Valley Fill 0.02 140 74 7 Plume and Carlton (1988)
Carbonate 0.01 940 5.40 38 Unpublished USGS Data
0.02 1.53 0.18 8 Winograd and Thordarson (1975)
Clastic 0.006 0.10 0.02 4 Unpublished USGS Data

* Average value for 18 tests in 14 basins

orders of magnitude smaller than sand and gravel. The interbedding of fine grained and coarse-
grained sediments in the valley-fill deposits results in horizontal permeabilities that are
considerably greater than vertical permeabilities.

On a regional basis, the transmissivity (a measure of the ability of an aquifer to transmit ground
water) of the valley-fill ranges from about 321 to about 259,200 ft*/day according to Burbey and
Prudic (1985) and Winograd and Thordarson (1975). The transmissivity of the alluvium in a
given valley or hydrologic setting is a function of both the permeability and the saturated
thickness of the aquifer. Small values of transmissivity (less than 670 ft*/day) generally indicate -
fair to poor well yield potential while high transmissivity wells (greater than 6,700 f*/day) may
be capable of producing wells yields in the hundreds or even thousands of gallons per minute.
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As with most of the undeveloped basins in White Pine and Lincoln Counties, and elsewhere in
Nevada, data on the transmissivity of the valley-fill aquifer in Spring Valley is limited. As part
of the MX Missile siting investigation a couple of aquifer tests were conducted in the alluvium
in Spring Valley; however, the results of these tests are reported by Bunch and Harrill (1984)
as inconclusive. As part of the water resources investigation of Spring Valley by Leeds, Hill,
and Jewett, Inc. (1983) conducted for Los Angeles Department of Water and Power three wells
were drilled in Spring Valley. Aquifer tests of these wells yielded the results shown in Table
3. The composite value of transmissivity for both the unconfined and confined aquifers was
calculated at about 3300 ft*> per day with the upper value for unconfined at about 5100 ft* per
day and the lower value for confined at about 1900 ft? per day.

Table 3.--Range of transmissivities from Spring Valley well tests® (ftday).

. Production Well| Observation Well| Observation Well

| Method of Analysis aA 2B 2

Unconfined aquifer with full penetration (drawdown) - - 5,100

Confined aquifer with full penetration and no boundary 2700

(drawdown) ’

Confined aquifer with full penetration and recharge boundary 2000

(drawdown) ’

Leaky confined aquifer with full penetration and no boundary 1.900

(drawdown) ’

Leaky confined aquifer with full penetration and impermeable 1.900

boundary (drawdown) ’

Leaky confined aquifer with full penetration (recovery test)

1) Taken from Table 3-6 of Leeds, Hill, and Jewett, Inc. (1983).
2) This is a composite value of transmissivity since the well is actually perforated in both upper and lower aquifers.

Regionally, the hydraulic gradient (slope of the surface of the ground water) in the valley-fill
aquifer is often less than 60 ft/mi, and is usually less than 30 ft/mi (Winograd and Thordarson,
- 1975). Because of the distribution of wells in Spring Valley, the calculation of gradients must
be based upon widely separated wells and the inferred water surface between the wells. Based
upon water level measurements taken at wells in and around Spring Valley in 1990 and 1991,
the gradient is quite variable, ranging from steep (about 100 ft/mile or more) between the upland
areas and the axis of the basin to about 10 ft/mi in the south-central part of the basin. On a
local basis, the gradients in the vicinity of operating water wells may also be steep.
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Consolidated Rock

The carbonate aquifers present in Spring Valley consists of thick sequences of Paleozoic
limestones and dolomites separated by thinner aquitards comprising shale or quartzite.
Collectively, the Paleozoic rocks that are present comprise the numerous individual rock units
that were previously discussed, and have an overall thickness of as much as 30,000 feet. Flow
through the carbonate aquifers is believed to occur primarily through fractures and solution
openings, and is likely to be concentrated in areas of greater fracture frequency. Except in areas
of structural or stratigraphic anomalies, the hydraulic gradient in the carbonate aquifers is likely
to be small because of high transmissivity.

The movement of ground water across the contact between the valley-fill aquifer and the
carbonate aquifer depends on the potentiometric heads (elevation of the water table or
piezometric surface) in each aquifer. In areas where the head is higher in the valley-fill, the
ground water is semi-perched and moves principally downward into the underlying carbonate,
serving to recharge the regional carbonate aquifer. Where the head in the carbonate aquifer is
higher than the valley-fill, ground water can enter the overlying alluvial material through upward
leakage from the carbonate rocks.

The Paleozoic sediments underlie the alluvial deposits at depth under all of Spring Valley but
probably are separated from the valley-fill deposits by volcanic rocks in the northernmost part
of the basin. Although four discrete rock aquifers comprising sediments of Paleozoic age can
be identified, the structural deformation that has occurred in the valley has resulted in the
overlapping of these aquifers. Thus for the purposes of developing a numerical model of the
area, the entire Paleozoic sequence may be considered as a single aquifer. In siting locations
for bedrock wells, the location of confining units within this sequence such as the Chainman
Shale and Eureka Quartzite should be given careful consideration.

Data concerning the hydraulic properties of the consolidated rock aquifers of Spring Valley are
lacking. In the nearby valleys, the transmissivity of the carbonate aquifer has been found to
range from 11 to 250,000 ft*/day (Winograd and Thordarson (1975); Burbey and Prudic (1985);
and unpublished U.S. Geological Survey data), with values as high as several hundred thousand
ft’/day possible in fractured areas (Winograd, 1963; Winograd and Thordarson, 1975).
Variations in structural setting, proximity to faults, mechanical rock properties, depositional
environment, and aquifer thickness are the chief parameters that account for the large variations
in the transmissivity of carbonates.

In general, it is inferred that the transmissivity of the carbonate aquifer in Spring Valley is
variable with the highest transmissivities occurring in the vicinity of major structural elements
such as north-south trending normal faults and the southeast trending faults in the southern
Limestone Hills and the Sacramento Pass area of the Snake Range. In these areas, dissolution
of the carbonates results in high secondary porosities and very high transmissivities. In the
relatively undisturbed areas between such structural features the transmissivities are probably
appreciably lower because of the inferred lesser degree of development of secondary porosity.
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The Tertiary volcanic rocks that crop out in the mountains of northern Spring Valley probably
represent a partial hydraulic barrier to ground-water flow. These rocks consist of tuffs and other
volcanoclastic rocks that generally form aquitards. Where extensively fractured however, these
rocks can yield moderate quantities of ground water to production wells. The older intrusive
rocks are also of note. The intrusives of the Kern Mountains and central Snake Range are
probably effective aquitards.

The clastic aquitard, a metamorphic core complex (Stewart, 1980), is composed of Precambrian
and Cambrian siltstones, quartzites, shales and sandstones. Ground-water potentials are likely
to be greatly affected by this unit because of the low transmissivity. In fact, recharge and
discharge areas are often determined by the location and orientation of this unit. Ground water
will tend to flow along the dip of this barrier rather than through it. The aggregate thickness
of this unit is approximately 10,000 feet; however, local thickness varies with structure.

Structural Features

Faulting within Spring Valley is generally consistent with features typical of the Basin and Range
Province (i.e., horst and graben structures oriented along north and northeast-trending normal
faults). The Basin and Range is dominated by north-south trending fault scarps and lineaments
that cut through the alluvium (Hose and Blake, 1976 and Tschanz and Pampeyan, 1970).
Several periods of regional tectonism have faulted, fractured, and displaced both bedrock and
valley-fill materials.

Of particular note are the thrust faults that are present in the Snake, Antelope, and Schell Creek
ranges. These low angle features have faulted older rocks onto the top of younger rocks. These
faults are of particular significance in that they can double the thickness of the aquifers (and
aquitards) that are present in the shallow subsurface. The tectonism has also greatly reduced the
overall thickness of post-Cambrian units present in some areas. As noted by Hose and Blake
(1976), less than 1000 feet of post-Cambrian sediments remain in an area where as much as
20,000 feet of sediments were originally deposited.

Along the eastern flanks of the Schell Creek Range, Precambrian sediments of the McCoy Group
have been thrust over the middle Cambrian units. A spring line comprising more than 60
springs and extending more than 35 miles occurs in the alluvial deposits to the east of this
structure. This limits of this spring line are coincident with the outcropping of the Precambrian
sediments and suggests that a buried contact between the alluvium and the Precambrian is the
cause of this spring line. Smaller and less continuous spring lines are also present to the west
in the higher elevations of the Schell Creek Range. Many of these smaller spring lines appear
to be coincident with the contact between the Precambrian units and the lower Cambrian units.

Also of note are faults that are not north-south trending such as the east-west trending faults in
the southern Limestone Hills. Existing data suggests that ground-water movement along these
faults occurs with flow from Spring Valley into Hamlin Valley. Where these faults intersect
north-south trending faults that occur along the mountain fronts, large scale dissolution of the
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carbonate aquifers may have occurred. Such intersections are generally more favorable for
ground-water development than areas where faulting is absent.

WATER RESOURCES APPRAISAL

To develop a steady-state ground-water flow model that is representative of Spring Valley’s
hydrologic system, it is necessary to define the magnitude of the water resources available in the
basin and the basin’s development history. The following sections present the available
information on the surface and ground-water resources of the valley.

Figure 5 shows a conceptualization of the overall hydrologic system of Spring Valley. Each of
the major components of the water budget for the valley are discussed in detail in the following
sections. It should be noted that although there are numerous wells in the basin and a
reconnaissance level study has been done by the USGS (Rush and Kazmi, 1965), detailed
hydrologic studies, however, have not been conducted. Therefore, the development of the
conceptual model of the valley must rely, in part, upon inference based upon the data and
interpretations that are available and analogy to other basins in eastern and southern Nevada that
share similar characteristics.

Surface Water

An accurate simulation of a hydrogeologic system requires an understanding of the surface water
conditions and the significance of surface water in the overall water budget for a given
hydrographic basin. This section describes the general conditions of the surface water regime
of Spring Valley.

General Conditions

Given its location in the arid Great Basin, the surface water resources of Spring Valley are
appreciable. The hundreds of springs that occur throughout the valley support the baseflow for
a number of streams. Snowmelt from the upland areas generates peak flows each May and June
of each year with many streams discharging thousands of acre-feet per year to the valley floor
area. These water resources support significant agricultural areas.

Because of the seasonal use of water for irrigation, surface water supplies are not used during
much of the year. Rush and Kazmi (1965) noted that this water "runs to waste" by evaporation
and represents a significant under utilization of the surface water resources in Spring Valley.

Available Records

Gaging data collected by the USGS are available for a number of streams (Garcia et al., 1992).
Major streams that drain the eastern slopes of the Schell Creek Range include Cleve Creek,
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Kalamazoo Creek, Siegel Creek, North Creek, Muncy Creek, Taft Creek, McCoy Creek,
Bassett Creek, and Odgers Creek. Only two major streams drain the Snake Range, Willard
Creek, and Spring Creek. Spring Valley Creek, in the northernmost part of the valley drains
parts of both the Schell Creek Range and the Antelope Range. Flows in these creeks are fed
by springs, snowmelt and runoff from winter and summer rainfall events.

Continuous discharge measurements are only available for a single gaging station on Cleve
Creek. Figure 6 shows the monthly maximums, minimums, and averages of Cleve Creek. The
average discharge for this creek, based upon 21 years of record, is 10.1 cfs. It should be noted
that the flow is highly variable however. In water year 1991 for example, the mean discharges
between October 1990 and April 1991 ranged from 4.52 to 5.2 cfs. Mean discharge in May
rose to 8.51 cfs and in June to 25.0 cfs reflecting the appreciable contribution from snowmelt.
Mean discharges in July through September 1991 steadily declined from 7.14 to 5.48 cfs. The
minimum discharge recorded occurred in February 1960 when a rate of only 2.3 cfs was
recorded. The maximum discharge of 440 cfs was estimated for May 1983. In water year
1991, the maximum discharge rate was 42 cfs on the Sth of June.
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Figure 6.--Select streamflow characteristics for Cleve Creek in Spring Valley
Nevada for the water years 1960-1992.
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Records for other streams are limited a few measurements taken in water year 1991 that are
presented in Garcia et al. (1992) and Bunch and Harrill (1984). Kalamazoo Creek was measured
at 0.31 cfs in November 1990, at 0.29 cfs in March 1991, and 4.42 cfs in July 1991. Other
measurements taken in July 1991 include Odgers Creek (2.51 cfs), Bassett Creek (4.65 cfs), Taft
Creek (2.51 cfs), and Willard Creek (0.46 cfs). The mean discharge for 12-18 July 1991 at
Cleve Creek (when the other measurements were taken) ranged from 6.6 to 7.7 cfs and averaged
7.0 cfs, close to the mean annual discharge rate of 7.25 cfs.

Stream discharge measurements were taken in June 1980 as part of Air Force investigations in
Spring Valley. Kalamazoo Creek was gaged at 4.0 cfs, McCoy Creek at 6 7.8 cfs, Taft Creek
at 12.9 cfs, Cleve Creek at 26.7 cfs, Pine Creek at 5.8 cfs, and Williams Creek at 10.2 cfs.
These data were collected during the peak discharge period and, when compared with water year
1991 records, indicate that the same seasonal variation observed at Cleve Creek is common to
the streams of the basin.

Measurements taken in July 1964 for other creeks are presented by Rush and Kazmi (1965) and
include Dry Canyon and Williams Canyon Creeks (3 cfs), Pine and Ridge Creeks (3 cfs), two
unnamed creek (3.1 cfs), McCoy Creek (9.52 cfs), Muncy Creek (4.23 cfs), North Creek (2.23
cfs) and Seigel Creek (2 cfs) If it is assumed that the measurements taken in July 1991 and 1964
are representative of mean annual conditions, then the total discharge from the creeks that were
gaged is 48.9 cfs or about 35,000 acre-feet per year. Flow in the washes in both valleys is
ephemeral, occurring in response to the infrequent precipitation over the drainage area. No
surface water measurements or estimates are available for the washes in Spring Valley.

Runoff

The total quantity of runoff from the mountains bounding Spring Valley is not known, but
Moore (1965, in Rush and Kazmi) estimated total runoff at 90,000 acre-feet per year. Runoff
is derived from two major sources, snowmelt, and rainfall. As discussed previously, the total
flow in gaged streams is about 35,000 acre-feet per year. If the baseflow conditions for Cleve
Creek are representative, then about half of this discharge is from ground water and half from
snowmelt and precipitation, of which snowmelt is undoubtedly the major contributor. The
distribution of the streamflows is quite seasonal with the major runoff event associated with
snowmelt typically occurring in May and June.

Heavy runoff events may result in short-duration flows along reaches of normally dry washes
in the lower parts of the valley; however, some amount of this runoff infiltrates along the upper
parts of the alluvial fans, directly into open fractures in the consolidated rock areas, and into the
coarse streambed deposits of the channels that drain the area. Much of this water is transpired
by vegetation or simply evaporates. That portion of the precipitation over the basin that does
not runoff, but infiltrates through the unsaturated zone to recharge the aquifers, must be
accounted for in the model. However, this recharge is accounted within the model independently
and does not require the simulation of rainfall (and snowfall) and runoff.
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Moore (1965, in Rush and Kazmi) estimated that a total of 90,000 acre-feet per year of runoff
occurs in Spring Valley with most (71,000 acre feet) contributed from the Schell Creek Range.
Given the elevation and extent of the Snake Range, the disproportionate contribution of runoff
from this source warrants further discussion. Moore (1965, in Rush and Kazmi) states:

"The high mountains of the southern part of Snake Range (the Wheeler Peak area) would
generally be expected to produce more runoff than is computed... Several factors may
cause the reduction from the anticipated amounts, two of the factors being less than
expected precipitation and unfavorable geologic structure... [east dipping fault zones]
may be highly permeable and transmit large quantities of water to the eastern side of the
range, where it is discharged as spring-fed mountain streams."

While it is agreed that geologic structures are a controlling factor on ground-water recharge, the
inference of east flowing recharge from the west slopes of the Snake Range is questionable. The
water budget for Snake Valley (as presented in Hood and Rush, 1965) does not appear to include
an increase in either the runoff or recharge rates. In fact, the recharge rates for Snake Valley,
as estimated by these workers for areas above 8000 feet, are less than those in Spring Valley.
The presence of numerous spring lines on the western slopes of the Snake Range and on the
floor of Spring Valley indicate that there is a significant source of ground water from the Snake
Range. That the runoff is disproportionately low does seem to indicate, as suggested by Moore
(1965, in Rush and Kazmi) that the recharge rate is higher than would be expected on the basis
of rock type alone.

The Wheeler Peak area is underlain near the surface by Cambrian quartzites and shales, and
Precambrian siltstone, quartzites, and conglomerates. At depth these rocks are probably
underlain by Jurassic intrusive rocks of the eastern group) as evidenced by the circular outcrops
of these granitic rocks around the entire Wheeler Peak area. Uplift associated with the
emplacement of this pluton may very well have greatly altered the hydraulic properties of the
overlying Cambrian rocks. These units contain thick sequences of shaly and argillaceous
limestones that, while generally only poor aquifers, can transmit significant volumes of water
when intensely fractured.

The occurrence of numerous distinct spring lines in the vicinity of this intrusive mass suggests
that flow is radial from the upland area toward both Spring Valley and Snake Valley. About 25
springs on the west slopes of the Snake Range are shown on 1:100,000 topographic maps of the
area. Another 17 springs occur in the downgradient alluvial slopes. Some of the spring lines
are situated near the contact between the intrusive rocks and the overlying sediments suggesting
that contrasts in the permeability of differing lithologies has a major effect on ground-water
flow. That similar spring lines occur in the alluvial portions of the valley suggests that this
effect is only partial and that leakage across this contact occurs. The spring lines in the valley
may be a result of the buried contact between the alluvium and the underlying Paleozoic
sediments.
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Ground Water

It is necessary to understand the conditions and characteristics of the ground water in Spring
Valley to develop an accurate numerical simulation. This section discusses the ground water
occurrence, source, movement, chemical quality, and budget for Spring Valley.

Occurrence

Ground water occurs in Spring Valley at shallow depths over much of Spring Valley. There are
a number of flowing wells in the Baking Powder Flat area in the southern and central parts of
the valley and two flowing wells are reported in the northernmost part of the basin. Elsewhere,
the depth to water over a large area of the valley floor is less than 20 feet and almost the entire
valley floor area south of T20N and north of TON has ground water at 50 feet or less below land
surface (Rush and Kazmi, 1965). The deepest water in the basin occurs under the alluvial fan
areas, about 200 feet or more on the fan between the Red Hills and Kern Mountains to a
maximum of about 420 feet in the high alluvium at the southern end of the valley.

Figure 7 shows the regional potentiometric surfaces for Spring Valley based upon the water level
data for the valley and vicinity, and an evaluation of potentiometric data for the Great Salt Lake
Desert flow system as a whole. The potentiometric surface shown is believed to represent a
reasonably accurate conceptual picture of the water underlying the basins. The many springs
that occur in the bounding mountains indicate that a significant ground-water mound occur under
both the Schell Creek Range and Snake Range. These ground-water highs reflect the higher
precipitation that occurs over these mountains.

In the valley floor areas the potentiometric surface ranges from almost 6,700 feet AMSL in the
northernmost part of the valley to less than feet AMSL about 5,760 feet AMSL at the south end
of the valley near the topographic divide with Snake Valley. Water levels over the rest of the
valley floor range from about 5,800 to 5,600 feet AMSL. Locally, water levels vary by only
a few tens of feet.

Data are generally lacking on the temporal variations in water levels in Spring Valley. Although
variations of as much as 15 feet of water may occur from year to year, no long-term change in
the water levels over the basin area apparent from the available data. For example, a well
located at 13N-67E 8ACA has water level data available for the period from 1953 through 1990.
The water level in 1954 was about 14 feet below land surface, the same as in 1990. Another
well, at 15N-66E 13D shows a similar trend with a depth to water of about 14 feet in both 1952
and 1991. These data suggest that although seasonal and annual variations may occur, the
overall water levels in the basin have remain essentially constant for the last 40 years. And this
further means that the basin is in a steady state condition where inflow equals outflow.

Head elevation data for the carbonate aquifer are lacking. The strong vertical hydraulic
gradients in the central portions of the basins, as evidenced by the numerous flowing wells,
suggest that the heads elsewhere in the carbonate aquifer are equal or higher than those in the
valley-fill aquifer.
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Source

The source of ground water within Spring Valley is from recharge of pre01p1tat10n over the
Schell Creek and Snake ranges. Lesser amounts of recharge are derived from the eastern and
southern bounding mountain ranges. The basin is closed topographically and no water is
contributed from other basins through surface water flow. Subsurface flow from Tippett Valley,
on the order of 2000 acre-feet per year may be occurring, accordmg to Rush et al. (1971) and
Harrill et al. (1988). This subsurface recharge was not included in the perennial yield estimate
made by Rush and Kazmi (1965) and, as discussed below, may be somewhat less. The results
of the modelling, described in later sections of this report, indicates that thlS inflow may total
about 1,700 acre-feet per year. _ o

Movement

Ground-water flow seems to be pnmanly controlled by the location of the source areas h1gh in
the surrounding mountains. In general, ground water flows eastward. from the Schell Creek
Range and westward from the Snake Range toward the valley axis where it is discharged to wells
and evapotranspiration. In the southern part of the basin, the water 1evel elevatlons dechne to
the southeast toward Hamlin Valley,

On the northeast, in the area where Rush et al. (1971) and Harrill et al. (1988) indicate
subsurface flow from Tippett Valley into Spring Valley, the available data suggest that less flow
is occurring. Thomas et al. (1986) indicate a water level elevation of 5,510 feet AMSL in
southern Tippet Valley while the unpublished USGS data indicate water level elevations of more
than 5,590 feet AMSL in the closest wells in Spring Valley. The divide between the two basins
ranges from in elevation from 6,863 feet AMSL at Tippett Peak on the northwest to about 5,900
feet AMSL on the alluvial divide, to a maximum of 7,522 feet in the Red Hills, to 9,630 feet
at a peak in the Kern Mountains. The elevation across this section is within the range where
ground-water recharge occurs. Based upon the limited water level data and the topography, it
is considered likely that a ground-water divide coincides with the topographlc divide and there
is only limited flow between Tippett Valley and Spring Valley

Ground-water heads in northern Lake Valley are h1gher than those in southwestern Spring
Valley Regional ground-water level data presented by Thomas et al. (1986) indicate that flow
in Lake Valley is to the south toward Panaca. The upper.Paleozoic‘carbonates of the
Fortification Range separate the two basins and the water level data on either side of this range
indicates flow away from the range both the southwest to Lake Valley and to the northeast to
Spring Valley. It is considered likely that a ground-water- divide i in the Fortification Range
roughly coincides with the basin boundary through this area and that there is no flow between
the two basins. \ :

There is evidence to support discharge from southern Spring Va]ley into Hamlin Valley,

estimated at 4000 acre-feet per year by Rush and Kazmi (1965). In the southern part of the
Baking Powder Flat area, water levels are about 100 feet higher than in the western part of
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Hamlin Valley. Tschanz and Pampeyan (1970) map the carbonates of the Limestone Hills,
which outcrop between the two basins, as Devonian, Silurian, and Ordovician dolomites. Their
geologic map of Lincoln County also shows two northwest trending faults through the pass that
separates the Limestone Hills on the south from the Wilson Creek Range. It is likely that
secondary dissolution of fractures along this fault zone has resulted in a highly transmissive zone
that drains southern Spring Valley into Hamlin Valley. -

Using water level data in each basin and an estimated flow path width of about 7000 feet, the
gross transmissivity of this zone would have to be on the order of 25,000 ft*/day to allow the
discharge of the estimated 1,500 acre-feet per year into Hamlin Valley. Such a transmissivity
would be reasonable for a fault zone of this type. If the entire length of the carbonate units
between the two basins north of this fault zone is considered (almost 13 miles) and a median
transmissivity value of 4,320 ft2/day (Burbey and Prudic, 1985 and Table 1) is assumed, then
the overall gradient of .001 suggests that flow on the order of 2,500 acre-feet per year. With
flow through the fault zone to the south, the total interbasin flow is estimated at 4000 acre feet

. per year. Based on these considerations, the estimate by Rush and Kazmi (1965), is considered

reasonable and the boundary conditions of the numerical model of Spring Valley were set to
simulate this quantity of flow.

Chemical Water Quality

The chemical quality of the ground water in Nevada depends on its location. The chemical
concentration in recharge areas is normally very low; however, the ground water comes into
contact with soluble rock materials for long periods of time as it moves towards discharge areas
where the chemical concentration is higher. The solubility, volume, distribution of rock
materials, time of water contact with the rocks, temperature, and pressure in the ground-water
system are factors that determine the extent to which the chemical constituents from the rock
materials will be dissolved. :

General

The water quality in Spring Valley varies between streams and ground water and is dependent
upon the geology, resident time, and temperature. Streams, supplied primarily from snow melt
are of very good water quality typified by very low electrical conductivity (EC). Springs in the
Valley have higher EC values than the streams and EC is higher in the eastern and northern part
of the valley. Wells in the area, from data presented by Bunch and Harrill (1984), show higher
EC values than most of the springs with shallow wells having the highest EC. Overall the water
quality is very good. Surface water samples from creeks on the west side of the valley ranged
from 30 to 52 umhos/cm. Springs have an (EC) range of 74 to 485 umhos/cm. Well EC (data
from Bunch and Harrill, 1984) ranges from 112 to 975 pmhos/cm.
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Streams

Perennial streams in Spring Valley are abundant and the majority are located in the Schell Creek
Range on the west side of the Valley. Water quality is excellent with very low EC. Seasonal
fluctuations occur with lowest EC during spring runoff moderate increases over the remainder
of the year as runoff decreases. The data from the streams are presented in Tables 4 and 5.

Springs

In 1991 a reconnaissance sampling of springs in Spring Valley was completed at 18 sites. EC,
pH, temperature, and alkalinity measurements were taken in the field and Ca?*, Mg?* samples
were collected for laboratory analysis. Based upon the results of the reconnaissance 5 springs
were sampled in 1992 for major ions, radioactive isotopes *C, *C, tritium, and stable isotopes
0 and deuterium. The data from field reconnaissance and major ion chemistry are presented
in Tables 4 and 5, respectively.

Figure 8 shows the location of the springs sampled during the reconnaissance and the respective
EC. Springs in the northern valley have a higher EC, greater than 400 pmhos/cm, than the
majority of the springs sampled which is attributed to the presence of volcanic deposits (see
Figure 4 for geology). Two springs in the east central part of the valley, South Millick and
Bubbling Sand, also display EC values in excess of 400 umhos/cm. The higher EC for these
wells is most likely from longer flow paths as the springs are located in the east central part of
the valley. The remainder of the springs have EC values less than 300 pmhos/cm with springs
closer to the mountain block having the lowest EC.

Age dates from *C samples from four springs sampled range from 4550 to 8510 years before
present (Table 6). Tritium data, Table 6, is below detection limits for the springs sampled with
the exception of North Shoshone Spring, which had a value of 23 pCi/¢f. The presence of
tritium at the spring in conjunction with the C age date of 6110 years before present suggests
a mixing of older and younger ground water.

Stable isotope data for *0 and Deuterium for the springs and creeks sampled is presented in
Table 6 and is shown plotted with the-meteoric water line in Figure 9. Generally the data
becomes isotopically lighter to the north of the valley, becoming lightest in the area of Piermont
and McCoy Creeks. The isotopic signatures coincide with the elevation of the drainage, with
the isotopically lightest values in the areas that have the greatest elevation. With the exception
of Millick Spring the data falls on the meteoric water line and values are typical of precipitation
at cold temperatures and high elevations. Millick Spring plots to the right of the meteoric water
line which indicates fractionation from evaporation.

Major ion data from the springs plotted on a trilinear diagram Figure 10, show that the water

is a calcium, magnesium, bicarbonate ion dominated water. Figure 11, modified from Mifflin,
1968, shows that spring samples plot in the areas designated as either local or low flow local
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in origin. This plot in conjunction with the C dates indicate that Spring Valley does not have
a regional flow component as part of its ground-water system.

" Wells

Ground-water samples taken from wells in Spring Valley display higher EC than either stream
or spring samples (data from Bunch and Harrill, 1984). Well location; EC, and completion
depths are shown in Figure 12. Major ion chemistry is presented in Table 5.  As shown in
Figure 12 the highest EC values correspond to wells that have shallow completion depths which
indicates the concentration of-salts from evapotranspiration. The overall higher EC at deeper
wells is attributed to longer resident time and deposits in which the wells are completed. The
trilinear diagram presented in Figure 10 shows, that the well samples are primarily calcium,
magnesium, bicarbonate ion dominated but with a higher percentage of sodium, chlonde and
sulfate ions relative to the spring samples.
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Table 6.--Stable and radioactive isotope data from select springs and streams in

Spring Valley.
Sample ID sBC e/, 14c Tritium 8180 °/, D/,
PDB PMC age * pCi/l VSMOW VSMOW
| McCoy Ck na na na T2+19 -16.0 -118
Piermont Ck na na na 53+/-8 -15.7 -116
S. Bastian Sp -8.0 34.7 8510+/-100 <10 . -16.2 -121
N. Shoshone Sp 9.3 46.8 6110+ /-85 23+/-7 -15.1 -111
The Cedars Sp -11.1 49.5 5645 +/-165 <10 -14.6 -108
E. Piermont Sp -13.7 na na ? -16.1 -121
S. Millick Sp -10.3 56.8 4550+/-75 ? -15.2 -116
PDB=Pee Dee Formation Belemnites PMC=Percent modern carbon
VSMOW = Vienna Standard Mean Ocean Water * C age dates are '°C corrected.
-90
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X \'\“e’b
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Figure 9.--Plot of Deuterium versus §'*0 of select water samples from Spring Valley.
Meteoric water line after Craig, 1961.
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Figure 12.--Location of select wells and corresponding EC and depth in Spring Valley.
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‘Water Resources Budget

A water resources budget consists of a complete accounting of all components of inflow and
outflow for a hydrographic basin. The results of any model developed to simulate flow in a
basin are dependent upon the accuracy of the budget. Table 7 summarizes the water budgets
for Spring Valley. The following sections present the current estimates for recharge and
discharge for Spring Valley.

Table 7.--Water resources budget for Spring Valley.

INFLOW Acre-feet/year (rounded)
Precipitation Ground-Water Component 75,000
Subsurface Inflow (from Tippet Valley) 2,000
Precipitation Surface-Water Component” 35,000

TOTAL 112,000

OUTFLOW
Evapotranspiration (phreatophytes) 70,000
Agriculture (crop transpiration)” 21,000
Outflow (to Hamlin Valley) 4,000
Other loss (mining, domestic, stock) 2,000
Surface water loss through evaporation (by difference) 15,000

TOTAL 112,000

Source: Rush and Kazmi (1965), Scott et al. (1971), Summit Engineering Corp.
1) not included in steady state model

Estimated Average Annual Ground-Water Recharge

Recharge to the Spring Valley Basin consists of three components: precipitation, subsurface
inflow, and secondary recharge. Estimates for these elements are provided in the following
sections.

Precipitation

The source of recharge to the hydrologic system of Spring Valley is the infiltration of
precipitation over the basin. No meteorological stations are located in Spring Valley and the
characterization of precipitation over the area is inferred from recording stations located in
adjacent valleys. The total precipitation over Spring Valley is estimated at 960,000 acre-feet per
year (Scott, et al., 1971). The volume of ground-water recharge derived from precipitation is
reported by Rush and Kazmi (1965) to be 75,000 acre-feet per year, or less than 8 percent of
the precipitation.
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The infiltration of precipitation does not occur evenly over a large area. Rather, as determined
by Eakin et al. (1951) and Quiring (1965), the distribution of precipitation, and hence,
infiltration and recharge, in the desert valleys of Nevada, is primarily a function of elevation and
latitude. Thus, for the purposes of developing a ground-water flow model of Spring Valley,
recharge totallmg about 75,000 acre-feet per year may be distributed accordmg to the zones
summarized. in Table 8. :

Table 8.--Recharge distribution zones for Spring Valley (Rush and Kazmi, 1965).

ELEVATION
Feet Above PRECIPITATION APPROX. AREA PRECIPITATION RECHARGE RATE RECHARGE FLUX
Sea Level Inches/Year Acres Acre-feet/year Percentage acre-feet/year (rounded)
>9,000 >20 59,100 103,000 25 26,000
8,000-9,000 15-20 107,300 156,000 15 23,000
7,000-8,000 12-15 183,500 206,000 7 14,000
6,000-7,000 8-12 393,000 326,000 3 10,000
<6,000 <8 342,000 171,000 0 0

TOTALS (rounded) ) 960,000 75,000

There is some question concerning the accuracy of recharge rates based upon this methodology.
As noted by Watson et al. (1976), the Maxey-Eakin method is simply a first approximation
which, in lieu of basin-specific data, provides a method for making gross estimates of recharge.
This methodology, while appropriate for reconnaissance level investigations, may have
significant error when applied to any given basin. However, Avon and Durbin (1994) concluded
the method is a fairly good indicator and is probably more accurate than portrayed by Watson
et al. (1976). Nevertheless, in water-rich valleys such as Spring Valley, the shallow depths to
water and extensive surface water regime suggest that the application of the Maxey-Eakin
method may underestimate the percentage of recharge. The amount of surface water infiltrating
into the ground-water system from the stream channels past the bedrock-alluvium contact is
unknown. The 35,000 acre-feet per year surface water component (listed in Table 7) is
estimated at the bedrock alluvial contact.

Subsurface Inflow

As noted previously, the inflow of ground water to Spring Valley from upgradient basins is
limited to only about 2000 acre feet per year contributed from Tippett Valley. The
hydrogeologic data that are available indicate that there are likely hydraulic divides between
Spring Valley and Tippett Valley on the northeast and Lake Valley on the southwest. Because
of these divides it is considered likely that flow from the Tippett Valley is limited to deep
underflow and no inflow from Lake Valley is occurring.

Secondary Recharge
Secondary recharge is usually estimated based on the type of usage of the ground water and

surface water. In many basins in Nevada, secondary recharge is minor. This is not the case
for Spring Valley. Because of the ample quantities of surface water flow that are diverted and
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that is used for irrigation and lessor amounts of ground water, an appreciable quantity of
artificially induced secondary recharge is believed to be occurring in the basin.

There is also a large component of naturally occurring secondary recharge in the basin. Rush
and Kazmi (1965) referred to the runoff that reaches the lowland areas of Spring Valley as
rejected recharge and noted that although it is a critical element of the water budget, it could not
be estimated. However, secondary recharge of water "rejected” in upland areas could be
appreciable and a significant part of the overall water budget for the basin.

Currently (1990), the water use within Spring Valley is primarily for irrigation with lesser
quantities withdrawn for mining, livestock watering, and domestic use. A total of about 6,900
acres of land are under cultivation. Most of the demand for irrigation is supplied by surface
water. Assuming an overall application rate of 4 feet per year and-a consumptive use rate of
75 percent (3 feet), then the secondary recharge over irrigated areas may be estimated at about
6,900 acre-feet per year. Consumptive use (agricultural ET) is estimated at about 12,500 acre
feet per year of surface water and about 8000 acre-feet per year of ground water. Surface-water
use is assumed (Rush and Kazmi, 1965) to be 60 percent while ground water provides about 40
percent. of water for irrigation.

Because of the seasonal nature of streamflow and precipitation, water ponds over a large area
of Spring Valley. If the underlying sediments are unsaturated then this ponded water contributes
secondary recharge to the ground-water system. Streambed infiltration and leakage from canals
is probably also contributing to secondary recharge, but the amount is unknown.

Based on the above, secondary recharge is providing some amount of ground-water recharge.
However, when evaluating the role of secondary recharge in the steady state hydrologic model
and the overall basin budget the following must be considered. For valleys such as Spring
Valley, where there is a significant surface component, it is difficult to separate the ground-
water component from the surface-water component.

Table 7 listed the water resources budget for Spring Valley, estimating a ground-Water recharge
component based on the Maxey Eakin method (Eakin, et al., 1951), a subsurface ground-water
inflow component based on Harrill et al. (1988), and an estimate of the surface water component

at the bedrock-alluvial contact. This estimate was arrived at based on spot measurements.of the

major streams during July 1964 which arrived -at a mean: flow of 50 cfs-and confirmed by
measurements made in July 1991 which totaled a mean flow of 48.9 cfs. These measurements
are discussed previously under the Surface Water section  of this report. As stated in this
section, the mean discharge for July at Cleve Creek (the only gaged stream) is:close.to the mean
annual discharge rate. If this is assumed for all the major streams the annual discharge is about
35,000 acre-feet per year at the bedrock alluvial contact (the gage at Cleve is near this contact).
This number is probably larger since it does not account for all streams or. washes, just the
major ones that have been measured. Rush and Kazmi (1965) estimated a rejected recharge
component of 90,000 which was a combination of surface water and ground water. Because
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water does pond on the playas and is lost to evaporation, the 35,000 acre-feet per year is
probably low. '

If the assumption is made that the Maxey-Eakin method (Eakin, et al., 1951) only applies to
recharge to the ground-water system occurring in the mountain block, as is the case in the
central to southern Nevada basins used to derive the method, then any recharge to the ground-
water system from surface water below the mountain block is not considered in the Maxey-Eakin
method. This makes the Maxey-Eakin method for estimating ground-water recharge in valleys
such as Spring Valley with significant surface-water components extremely conservative.

It is this surface water that is primarily diverted for irrigation, therefore manmade diversions
probably result in aiding recharge to the ground water system, since 25% is assumed to enter
the ground-water system and 75% is assumed to ET from crops. Prior to man-made diversions,
some fraction recharged the ground-water system and the remaining surface water flowed to the
playa and evaporated. Because of the shallow ground-water table in this area, the component
reaching the ground-water system was also evaporated or transpired.

Therefore the steady state modelling effort only considers the ground-water component as
defined by the Maxey-Eakin method and ET from phreatophytes, as defined by Rush and Kazmi
(1965). Secondary recharge and evapotranspiration from agriculture is considered to be within
the conservative error of the system recharge estimate and probably has not markedly changed
the steady state hydrologic budget anyway.

Estimated Average Annual Discharge

Components of discharge include evapotranspiration, which includes spring flow, well pumpage,
and subsurface outflow. Estimates of the quantity of these components are included in the
following sections.

Evapotranspiration

Because of the shallow depth to the water table over much of Spring Valley, evapotranspiration
(ET) is the major source of ground-water discharge. ET includes the consumptive use of water
by phreatophytes and evaporation from bare soil. Rush and Kazmi (1965) reported that ET in
the lowland areas of Spring Valley is on the order of 70,000 acre-feet per year. ET rates and
acreages used to calculate 70,000 acre-feet per year are shown in Table 9. Minor ET may occur
in upland areas where perched ground water may be present and in the areas immediately
downgradient of discharging springs.

There is published information that suggests that the Rush and Kazmi (1965) estimate of ET is;.

low, and may be significantly low. For example, in developing their estimate of water use by
greasewood and rabbitbrush, these authors assumed a probable average ET rate of 0.2 acre-feet
per acre per year and estimated total ET for this vegetative cover at 28,000 acre-feet per year.
Robinson (1970) however in a controlled experiment, measured average ET by greasewood at
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1.4 acre-feet per acre (of which 0.7 acre-feet per acre was ground-water consumption) and by
rabbitbrush at 1.65 acre-feet per acre (of which 1.06 acre-feet per acre was ground-water
consumption). Nichols (1992) found phreatophyte transpiration might be up to 3.5 times as high
as those used by the USGS reconnaissance studies for northern and eastern Nevada. Applying
factors reported by Nichols as shown in Table 9, the evapotranspiration in Spring Valley could
be as high as about 140,000 acre feet per year.

Table 9.--Estimated annual natural ground-water discharge by evapotranspiration in Spring

Valley.
: Depth to Average Areal| Average” , Average? ,
Means of Ground-Water Discharge Water :;:) Density Use Rate Dz::h;rge Use Rate D(l::h;r)ge
® | ¢ %) @®yD) 1 @y A
Wet meadow and salt grass 0-5 14,600 50 1.5 22,000 — (22,000)
Saltgrass, rabbitbrush and
moderately wet meadow 0-10 13,200 30 1.0 13,000 -— (13,000
Greasewood, saltgrass, meadowgrass 5-15 7,100 30 5 3,600 .8 5,700
Greasewood and rabbitbrush 10- 50 139,000 15 2 28,000 N 97,000
Bare soil and sparse vegetation 5-15 11,600 - .1 1,200 — (1,200)!
Totals (rounded) 186,000 70,000 — 140,000°
1) Based on Hood and Rush (1965) 3) Rounded
2) Based on Nichols (1992)
Springs

As its name implies, one of the most striking hydrologic features of Spring Valley is the
presence of hundreds of springs and seeps. The many springs sustain an appreciable baseflow
for creeks in the mountains and valley. As noted previously, many of these springs occur in
distinct spring lines that appear to be the result of geologic controls on ground-water flow.

Given the number of springs within the basin, records on spring discharge are quite scant. Rush
and Kazmi (1965) could only characterize the spring discharge as "considerable”. For Cleve
Creek, the base flow of about 5 cfs is supported by springs and represents one-half of the
average discharge rate of 10.2 cfs. If a similar relationship occurs between base and peak flows
at other gaging stations, then the discharge of springs feeding gaged streams is about 18,000
acre-feet per year. The discharge of springs to ungaged reaches of streams cannot be estimated
but could be significant.:

Water Wells
Based on information provided by SEC, there are more than 250 surface water and ground-water

rights or applications for Spring Valley. The largest single users of ground-water are the
agriculture and mining sectors.
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With about 6,900 acres under irrigation, and assuming a consumptive rate of 3 acre-feet per
acre, then total water used for agriculture is estimated at about 21,000 acre-feet per year. If one
assumes that 40 percent is supplied by ground water, this equals to about 8,000 acre-feet per
year of ground water lost due to crop consumption.

Other ground-water use sectors include mining, stock watering, quasi-municipal use, and
recreation. Considering these permitted ground-water rights of about 2000 acre-feet with the
8000 acre-feet of estimate agriculture consumption ground-water pumpage is estimated at 10,000
. acre-feet per year.

Outflow

Discharge through subsurface flow from the Spring Valley is to the southeast into Hamlin
Valley. Rush and Kazmi (1965) estimated that about 4000 acre-feet per year of ground water
discharge into Snake Valley from Spring Valley through Hamlin Valley. As discussed
previously, this estimate agrees well with the expected ranges of transmissivities present, the
observed flow path width and the measured hydraulic gradient between the two basins.

Total Discharge

As discussed above the total discharge from Spring Valley is difficult to quantify. The
evapotranspiration from the phreatophytes are estimated at 70,000 acre-feet per year (Rush and
Kazmi, 1965). Ground-water underflow is estimated to be about 4000 acre-feet per year.
Currently (1990) transpiration from crops is estimated to be about 21,000 acre-feet per year.
The volume of surface water lost through evaporation is not quantified. About 2000 acre-feet
per year is estimated to be lost from other activities such as mining, stock watering, and
domestic uses.

Perennial Yield

Scott, et al. (1971) define perennial yield as "the maximum amount of natural discharge that can
be salvaged each year over the long term without depleting the ground water reservoir.” The
perennial yield of Spring Valley is reported to be 100,000 acre-feet per year by Scott et al.
(1971). This value, as developed originally by Rush and Kazmi (1965), includes the salvage of
one-third of the rejected recharge.

Storage

The quantity of ground water stored in the geologic units underlying Spring Valley is large; the
amount of recoverable ground water in storage in the valley reservoir is estimated to average
about 10 percent of the volume of the saturated valley-fill (Scott, et al., 1971). For Spring
Valley, Rush and Kazmi (1965) estimated the quantity of recoverable ground water in the
saturated valley fill to be 4.2 million acre-feet in the upper 100 feet.
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No estimates have been made of the amount of ground water that is stored in the carbonate
aquifer in Spring Valley. Although the storage capacity of the carbonates is believed to be less
than that of the valley-fill, the larger saturated thickness and greater areal extent of the carbonate
aquifer suggests that the quantity of recoverable water from storage may be even greater than
that expected from the valley-fill deposits.

Dettinger (1989) reported that the quantities of ground water in the regional carbonate aquifer
are "enormous”, and estimated that the total quantity of water stored in this regional aquifer
south of Pioche and Tonopah is on the order of 800 million acre-ft. Adopting Dettinger’s
assumption of a total of one percent of the aquifer volume as being recoverable, then a rough
estimate of the recoverable ground water in storage in Spring Valley can be made. Based upon
this recovery factor, the areal extent of the carbonates underlying the valley (approximately
1,300 square miles and excluding the Cambrian clastic aquitard), and an assumed saturated
thickness of 2000 feet (about the limit for economic well drilling), then the total recoverable
ground-water storage in Spring Valley is estimated to be approximately 16 million acre-feet.
However, the upper 100 feet of the rock aquifer probably contains about 800,000 acre-feet of
recoverable ground-water.

INVENTORY OF WATER RIGHTS, PUMPAGE, AND LAND USE

An estimate of ground-water usage in a basin can be obtained from present water rights,
pumpage, and application of pumped water to crops and other uses. These factors are examined
in the following sections.

Present Development

The level of development of water resources in a basin can be illustrated by the water right
allocations and the current ground-water pumpage within that basin. In Spring Valley,
agricultural development is present, with 6900 acres under irrigation. It is conservatively
estimated that about 60 percent of the water used to support agriculture is derived from surface
water sources. Mining and industrial users account for the second largest water use sector in
the valley. The Nevada State Engineer has, however, allocated water-right permits in the basin
and applications have been made for additional appropriations that are senior to the District’s
applications. '

Water Right Status

Based on information supplied by SEC contained in Appendix B, the State Engineer has
allocated water-right permits in Spring Valley for both surface water and ground water totalling
about 73,600 acre feet. Of this total about 18,000 acre feet per year represent ground-water
rights and 55,600 acre feet per year represent surface water rights based on consumptive use as
listed in Table 10.
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Table 10.- Existing permits and applications (consumptive use) in Spring Valley
(acre-feet per year).?

" Permits Applications I

| Surface Underground Surface Underground

Irrigation/Domestic 53,600 15,800 28,500 29,000
Mining/Industrial 1,600 1,800
Stock 400 400
Totals 55,600 18,000 28,500 29,000
|| 1) Excluding Desert Land Entries |
Pumpage

Data on actual water use in Spring Valley are not available. It is assumed that the total pumping
is about 10,000 acre-feet per year, based upon an assumed consumptive use as discussed
previously under wells.

Land Use

Most of the land in Spring Valley is public-domain land administered by the Bureau of Land
Management. Some areas are used for livestock range and there are about 6900 acres
conservatively estimated under irrigation.

Future Development

Plans for future development of Spring Valley are unknown. As Table 10 shows, there are
about 28,500 acre-feet of consumptive surface water applications preceding the District’s filings.
The majority of these are for irrigation rights. However, there are currently permits for 53,600
consumptive acre-feet which would support about 18,000 acres. For 1990 it was estimated about
6,900 acres were under irrigation. This is an extremely conservative estimate which considered
acreage that appeared it had not been irrigated for some time. Landsat Thematic Mapper (TM)
satellite data was analyzed (June 1990 scene) for land under active irrigation. This analysis
showed that about 4,500 acre-feet were under active irrigation with about 1,000 acres irrigated
within the past few years. It appears, based on Rush and Kazmi (1965) estimation of 8,700
acres under irrigation in 1964, that overall agriculture is declining.

Of the 29,000 acre-feet of consumptive ground water right application preceding the Districts,
one application is for 26,000 acre-feet for industrial use. This application was filed for the
White Pine Power Project by Los Angeles Water and Power in Los Angeles, California. Of the
existing 15,800 acres of consumptive ground water permitted, it is conservatively estimated that
about 10,000 acre-feet per year are actually used.
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MODEL DEVELOPMENT

MODFLOW is a three dimensional ground-water flow model that simulates ground-water
movement through gridded layered cell blocks by solving a series of finite difference equations.
These equations preserve the quantity of ground water in the modelled area. For any further
detail regarding the flow model, the MODFLOW documentation (McDonald and Harbaugh,
1988) should be consulted.

The first step in developing a ground-water flow model is the formulation of a conceptual
hydrogeologic model of the area to be mathematically represented. This conceptual model is
based upon the available hydrologic data, inferences based on observations of similar hydrologic
settings, and assumed conditions or expected ranges of conditions for parameters that have not
been measured or are not readily estimated for the subject hydrologic basin.

The first step in the mathematical representation of the conceptual model is the development of
a grid system covering the hydrologic basin. The grid system can be either single or multiple
layers with each cell in the model being identified by grid row, column, and layer designation.
Usually the grid size and number of layers are chosen based on the amount of available
hydrologic data for the particular basin. Each cell is given a number of parameters (i.e.
transmissivity, storage (in transient scenarios), conductive characteristics for spring flow,
recharge where appropriate, and rates of evapotranspiration when the water levels are within a
set distance from land surface) which control water flow through the model. The District made
the decision to make all the grids for the individual ground-water flow models one mile by one
mile and each model two layers, one to represent the alluvial system and the other the
consolidated bedrock. In some valleys there were not enough data to warrant this scale;
however, preparation of the model on this scale will provide a framework for future data entry
resulting in model refinement.

Approach and Assumptions

The approach taken in all the individual basin models was to produce a steady state model which
replicated as closely as possible the hydrologic basin budget as defined by the USGS while
attempting to match existing ground-water levels. The most important "constant"” becomes the
amount of water entering the system or the recharge and of course water levels which serve as
calibration points. Rush and Kazmi (1965) established the hydrologic budget for Spring Valley.
As discussed previously, there are data for over 120 wells in Spring Valley which provides a
good areal data base for model calibration, however there are no known wells completed in
consolidated rock.

A one square mile grid, 113 rows by 26 columns as shown in Figure 13, consisting of two
layers, was constructed to simulate ground-water flow in Spring Valley. Both the upper alluvial
fill and surrounding consolidated rock outcroppings and the lower consolidated rocks were
modelled as confined fixed transmissivity units. Parameter selection (i.e. transmissivity and
vertical leakance) was keyed to rock type. Figure 14 shows the lithology distribution for the
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upper layer, specifying alluvium and rock type based on the digital representation of the Nevada
1:500,000 scale geology map (Stewart and Carlson, 1978) prepared by Turner and Bawiec
(1992). The lower layer or underlying consolidated rocks were assumed to be carbonates with
some overlying volcanics which were simulated by using the vertical conductance between
layers.

Parameter Estimates
Recharge and Discharge

Rush and Kazmi (1965) estimate the recharge, based on the method described by Eakin et al.
(1951), to Spring Valley to be about 75,000 acre-feet per year. Rush and Kazmi (1965) also
estimated the total ground-water discharge from evapotranspiration to be about 70,000 acre-feet
per year. The amount of ground water used in Spring Valley was estimated by Rush and Kazmi
(1965) to be that necessary to irrigate about 40 percent of the total 8,700 acres under irrigation
in 1964, with surface water being used for the majority of irrigation. If one assumes a
consumptive use of 3 feet per acre, this equates to about 10,000 acre-feet per year of ground-
water use for irrigation in 1964. A recent assessment of land use and water rights permits in
these valleys confirmed that well pumpage for irrigation probably declined in the past thirty
years as has the total irrigated acreage and is estimated to be about 8000 acre-feet per year.
Also, it is estimated that another 2000 acre-feet per year is used for mining, domestic, and stock
watering, for a total ground-water pumpage of 10,000 acre-feet per year.

Primary Recharge

Primary recharge in Spring Valley occurs from the infiltration of precipitation into the ground-
water system occurring in the higher elevations as well as from some infiltration of surface water
runoff and spring flow. Spring Valley receives a large part of its recharge from the Schell
Creek Range bordering the valley on the west side. Other ranges contributing to Spring Valley
recharge are the Snake and the Wilson Creek Ranges on the east side of the valley.

Digital elevation data were used to computer generate and distribute recharge based on the
Maxey-Eakin method (Eakin et al., 1951) with the factors listed for Spring Valley in the report
by Rush and Kazmi (1965) and shown in Table 8. Digital elevations were obtained for the
complete Cooperative Water Project (CWP) area from the USGS, which are based on the
1:250,000 scale Army Map Series (AMS) maps and contain an elevation every 90 meters. This
data was smoothed by finding the nearest neighbor then resampling at 150 meter intervals. The
file was then subset for the Spring Valley grid area. It should be noted that even after
smoothing the digital elevations, there were areas that had erroneous elevation values, values
lower than the water table. A depth to water map was made that showed potential areas where
there could be elevation busts. Near the valley axis in the central to northern part of Spring
Valley, the water table is very near land surface and artesian in some areas. The accuracy of
the digital elevations, since their source is the 1:250,000 scale AMS maps with 100 feet
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supplemental contours is about 50 feet; therefore, an elevation error of just a few feet can result
in water levels above land surface.

Based on the depth to water map, areas where water was above land surface were compared to
the USGS 1:100,000 scale maps. In areas where there were elevation errors in the DEMs, these
values were replaced with values interpolated from the 1:100,000 scale maps.

Dr. James Tracy developed a program to calculate recharge based on these digital elevations for
each grid cell using the Eakin factors (precipitation and percentage infiltrating the ground-water
system) listed in the various USGS reconnaissance reports. The product of the program is a
matrix corresponding to the grid which specifies recharge rates for each cell. This program was
used to generate such a matrix for the Spring Valley area.

Figure 15 is a graphical representation of the recharge distribution used in the Snake and Hamlin
Valley model. Based on this method, the recharge for Spring Valley was calculated to be about
72,000 acre-feet per year, which was what was calculated by Rush and Kazmi (1965) but they
rounded the number to 75,000 acre-feet per year.

Secondary Recharge

Secondary recharge is due to infiltration of water from anthropogenic uses such as irrigation or
septic disposal systems. As stated above, secondary recharge from irrigation was estimated to
be about 7000 acre-feet per year based on a 25% return to the ground-water system (a
combination of both surface and ground water) in Spring Valley. The majority of this (estimated
to be 60%) is from surface water. Ground water is used only to supplement surface water in
most cases. The transient runs that will be simulated as part of the District’s regional model will
include pumpage based on land use. As discussed previously in the report, this secondary
recharge is not thought to be significant in terms of the steady state budget and was not included
in the steady state model.

Discharge
Evapotranspiration

Evapotranspiration (ET) was simulated in Spring Valley by using the MODFLOW ET module.

Maximum rates and extinction depths are specified and ET is calculated linearly, based on depth -

to water, with zero ET at the specified extinction depth and maximum ET occurring when the
water table is at land surface.

Rush and Kazmi (1965) estimate ET in Spring Valley for five different types of phreatophytic
zones based on types of phreatophytes and depths to water and one zone for bare soil with sparse
vegetation, these are shown in Table 9. To incorporate these zones in the model, the map
delineating these zones was digitized and using the ARC Info gridding function a matrix was
established specifying a certain number for a specific zone corresponding to the appropriate grid
row and column. Figure 16 shows the resulting zones, final rates and extinction depths used in
the model.
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Because the rates assumed by Rush and Kazmi (1965) were constant for each zone regardless
of the actual variable depth to water, greater potential ET rates had to be specified in the ET
module to arrive at volumes specified by Rush and Kazmi (1965). Initially, extinction depths
specified in Rush and Kazmi (1965) were used with rates twice those listed to compensate for
the overall rate regardless of depth to water, as shown in this report in Table 9. Therefore,
when the model simulated depth to water was one half the listed depth to water range or
extinction depth specified by Rush and Kazmi (1965), the rate was equal to that listed in Rush
and Kazmi (1965). These rates resulted in insufficient ET causing water levels to be higher than
land surface. Finally, rates two to four times as great as that specified in Rush and Kazmi
(1965) with the same extinction depths, with one exception discussed below, were used in the
ET module and produced a total ET of about 70,000 acre-feet per year. The one exception is
that the extinction depth of 50 feet was used for both designations of greasewood and also one
maximum rate of 0.73 ft per year was used. The percentages of ET occurring in each zone are
near the USGS designations with that for greasewood being slightly higher (54 % compared to
45%) which was compensated for with the salt grass rates being slightly lower (9% compared
to 19%).

Springs

Springs are found throughout Spring Valley, on alluvial fans on both sides of the valley, in the
middle of the valley and in the surrounding mountain blocks. There are, however, two main
spring areas; in the northern part of the valley most of the springs are on the west side, and in
the southern part the springs are generally on the east side. The flows of the numerous high
altitude springs in the mountain block join the snowmelt and become part of the surface runoff.

Most of the springs are classified as gravitational cold water springs, but there is thermal water
in the southern part of the valley in the area called the Cedars. In this area there are several
flowing wells that provide about 21 degrees C water to a series of ponds. However, there are
no known regional thermal springs in Spring Valley.

Spring flow data is scarce. Some recent water quality and flow data were reported in the
"Chemical Water Quality" section of this report. The magnitude of the spring flow ranges from
seeps and minor measurable amounts to several hundred gallons per minute. Total spring flow
in Spring Valley has never been determined but is probably on the order of several thousand
acre-feet per year. The spring flow in the model was accounted for in the evapotranspiration
amount since these springs support the vegetation and phreatophytes in the valley. As mentioned
above the evapotranspiration volume calculated by the model for Spring Valley is about 70,000
acre-feet per year.

Hydraulic Characteristics

The hydraulic characteristics govern how the water introduced by recharge or interbasin flow
moves through the modelled area to the areas of discharge. For a steady state simulation the
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important hydraulic characteristics are transmissivity, boundary conditions (conductances) and,
since this is a two layer model, vertical leakance. These parameters are discussed below:

Boundary Conditions

Each individual basin was modelled as a "free body" tied to general head boundaries outside the
existing basin boundary. The water levels specified for the general head boundaries were based
on Thomas et al. (1986) for each layer. Conductances were established to simulate the USGS
estimates for inflow and outflow in each layer, as well as match existing water levels. "Figures
17 and 18 show the location of the general head boundaries and the conductances used in each
layer.

Inflow

Harrill et al. (1988) estimate that about 2000 acre-feet per year enter Spring Valley from Tippet
Valley in the northern part through the consolidated rocks. This water then flows south into
Spring Valley toward the playa area. The model lower boundary conditions result in about 1700
acre-feet per year entering Spring Valley from Tippett Valley.

Outflow

Rush and Kazmi (1965) and Harrill et al. (1988) estimate that about 4000 acre-feet per year exit
southeastern Spring Valley in the consolidated rocks through the trough area south of the Snake
Range into Snake Valley. The model lower boundary conditions result in about 3,700 acre-feet
per year exiting southeastern Spring Valley.

Transmissivity

Transmissivity values were assigned based on rock type. The USGS digital representation of
the 1:500,000 scale Nevada Geology (Turner and Bawiec, 1992) was used to classify rock types
into transmissivity zones. A raster file of the geology was created from the digital map by using
the gridding function in ARC Info, subsetting a number corresponding to the geology type every
half a mile for the complete CWP regional model area. This grid was then subset on mile nodes
for the area corresponding to the Spring Valley model, which included sixteen different geologic
classifications as shown in Figure 14.

As part of the MX Missile siting investigation a couple of aquifer tests were conducted in the
alluvium in Spring Valley; however, the results of these tests are reported by Bunch and Harrill
(1984) as inconclusive. - As part of the water resources investigation of Spring Valley by Leeds,
Hill, and Jewett, Inc (1983) conducted for Los Angeles Department of Water and Power three
well were drilled in Spring Valley. Aquifer tests of these wells yielded the results shown in
Table 3. The composite value of transmissivity for both the unconfined and confined aquifers
was calculated at about 3300 ft? per day with the upper value for unconfined at about 5100 ft?
per day and the lower value for confined at about 1900 ft* per day.

35

FRE N I R S

LI

[

Y4 £ & €

M |

YOO OO OO OO OO OO OO0 00000000 e



1 10 20 26

10 T T
10
-
20 []
0] 5 10
o Lol
Miles
Spring Valley
wl /
50 |
<+ Model boundary
60 [
70 L Explanation
Values are hydraulic
conductance, in feet? /day.
80 r_
N 1
® 1000
%0 |- R 1500
100 L~
Grid nodes one square mile
1o Figure 17. —— Boundary conditions in upper
"3 layer for Spring Valley model.

56



10

20

30

40

50

60

70

80

90

100

110
113

26

0O 5 10
Loonadoynsd

Miles

/ Spring Valley

Model bouredary

Explanation

Values are hydraulic
conductance, in feet? /day.

8 1
® 1000
& 1500

Grid nodes one square mile

Figure 18. —— Boundary conditions in lower
layer for Spring Valley model.
57

A 4> €Y £ 4 4) 4 & 4

£ 4

an

Y 4y

R R A o A A N N A R ar e e e e e No N Wa N R RN AR AN AN AN AN AN AN AR AN AN AR AN AN DN AR



v

Initially in the upper layer the transmissivity values of 5000 ft* per day was assigned to
alluvium, about 2000 ft? per day for playa deposits, around 1000 ft? per day for the carbonate
rock types, and about 250 ft* per day or slightly lower for clastics and volcanic rock
classifications. In calibrating the model, over 100 wells were evaluated and after checking land
surface elevations and deleting duplicate data sets, 58 were considered (Table 1) to provide an
areal coverage of depth to water, and were used in the model calibration, which are all
completed in the alluvium. It became apparent that the transmissivities of the alluvium and playa
deposits were too high because the majority of the simulated water levels were much lower than
the observed values. The model is only a two layer model allowing transmissivity values for
the upper alluvial system and the consolidated rocks. There is insufficient data to warrant
modelling the alluvial system with more than one layer. To match water levels it was necessary
to use lower transmissivity values for most all the units in the upper layer. Transmissivity
values used for the upper layer are shown in Figure 19. It was also necessary to further reduce
transmissivities in an area of the Schell Creek Range which is also shown in Figure 20.
Simulated water levels in this area in wells near the western spring line were significantly lower
than actual levels. Reducing the transmissivity in this area better simulates the spring line and
better matches existing water levels in this area.

There are no wells completed in the consolidated rock in Spring Valley, therefore initial
estimates of transmissivities for the lower layer were based on other consolidated rock wells as
well as other models prepared for valleys within the carbonate rock province. Carbonate rocks
were assumed to be underlying the alluvium and playa deposits and a value of 1000 f£ per day
were initially assigned to those. During calibration the value for the consolidated rock that
seemed to provide the best match of the alluvial water levels was 2000 ft2 per day. However,
the same area of lower transmissivity in the Schell Creek Range discussed above was also used
in the second layer. The resulting transmissivities for the lower layer are shown in Figure 20.

Vertical Leakance

The vertical leakance value establishes the connection between the upper and lower model layers
and were calculated as specified by McDonald and Harbaugh (1988) based on assumptions of
an overall general thicknesses of 4000 feet for the alluvium and 15,000 feet for the bedrock.
Recalculation was done as transmissivity values varied significantly during calibration. For most
all the transmissivity units the vertical conductance remained generally around 1.5 to 2.5 x 10
ft per day. For simplicity an overall value of 1.9 x 10”° was used.

The sensitivity of the vertical leakance values is discussed in more detail in the section titled
"Steady State Simulation".
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Steady State Simulation

The potentiometric surfaces for the upper and lower layers resulting from the steady state
simulation for Spring Valley are shown in Figures 21 and 22 with the actual water levels
imposed for the upper layer. There are no water level measurements in the bedrock or lower
layer.

Upper Layer

Table 11 shows the 58 wells used for calibration and the differences between the actual and
simulated water levels for the Spring Valley model. These measurements are the complete water
levels included in Table 1, with the same ID numbers.

Figure 23 graphically illustrates the difference between the actual water levels and the model
simulated levels for wells located from south to north Spring Valley. Of the 58 calibration
points 95% are within 100 feet of the actual measurements, 83% being within 50 feet, 79%
being within 40 feet and 57% being within 20 feet of the actual measurements. Also the
distribution of positive and negative residuals is about even.

Overall the match of the simulated values with the actual values is thought to be reasonable as

well as the match with the USGS budget. Therefore, the steady state model provides a

reasonable simulation of the potentiometric surface.
Lower Layer

The potentiometric surface generated by the model for the lower layer is shown in Figure 22.
There are no wells completed in the consolidated rock. As discussed in the section titled
"Boundary Conditions" the general head boundaries are based on regional water levels found in
Thomas et al. (1986). The contours indicating the potentiometric surface found in Thomas et
al. (1986) for this area are dashed because there are no hard data to indicate the gradient in the
consolidated rock aquifer, so values based on the upper heads were used. Only two
transmissivity values were used for the lower layer as discussed above, with one area of low
transmissivity to keep simulated water levels high enough to match existing water levels.
Outflow from Spring Valley is estimated at 4000 acre-feet per year to Hamlin Valley. The
steady state model matches this estimate. '

Based on the ground-water data and the uncertainties of the volume and flowpaths, the steady
state model provides a reasonable match to existing water levels and the USGS ground-water
budget. Table 12 compares the ground-water budget found in Rush and Kazmi (1965) with the
model generated budget.
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Table 11.--Comparison of actual vs. simulated water levels for wells used in calibration.

Water Level
(feet above sea level)

(=

Actual

Simulated

: 8N-68E 23BAC 103 22 5762 5824 -62 I

2 | 10N-67E 7BA 90 11 5716 5780 64
3 11N-66E 24BDA 86 10 5757 5780 23
4 | 11N-66E 1AAB 83 11 5788 5777 11
e 11N-66E 23AB 86 10 5793 5780 13
[ 6 | 1iNe6E3sDBA 88 10 5782 5775 7
7 | 9N-68E 30AAA 99 18 5765 5808 43 ||
8 10N-68E 31CD 95 17 5800 5800 0 I
9 1IN-68E 19CDC 86 18 5825 5808 v |
10 | 11N-68E 31CDC 88 17 5780 5796 -16 J|
11 | 10N-67E 16AAB 91 14 5785 5788 3 ﬂ
l 12 | 10N67E 22AA 2 | 15 5854 5794 60
13 | 10N-67E 23ACB 2 15 5772 5794 22
14 | 10N-67E 26BB 93 15 5825 5797 28
15 | 1IN-67E 13B 85 16 5793 5790 3
16 | 17N-67E 28A 51 13 5538 5548 -10
17 | 20N-67E 9BA 30 13 5598 5751 -154
18 | 16N-67E 18A 55 11 5569 5607 -38 J|
19 | 18N-66E 1B 41 | 10 5580 5579 1 J|
20 | 17N-68E 7AB 47 17 5540 5552 a2 |
21 | 16N-67E 3AAA 53 15 5581 5583 2 |
22 | 16N-67E 27DAD 57 15 5592 - 5609 47|
23 | 18N-67E 1CCA 41 16 5552 5569 a7 |
24 | 19N-67E 13AAA 37 16 5574 5614 -40
25 | 20N-67E 26ABB 33 15 5591 5685 -94
26 | 12N-67E 8A 78 12 5730 5767 -37
27 | 13N-67E 8ACA 72 12 5756 5769 13 |
28 | 13N-67E 31DDC 77 11 5763 5798 -35
29 | 15N-66E 13D 61 10 5746 5712 34
30 | 16N-66E 36DBA 58 11 5644 5620 24
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Table 11.—-Comparison of actual vs. simulated water levels for wells used in calibration (Continued).

19N-66E 14AB

Water Level
(feet above sea level)

Simulated

32 | 13N-67E 17DBA 73 12 5778 5773 5

I 33 |13nve7m18DcB 73 11 5799 5804 -5 1|

| 34 | 14ne6E 24anB 68 10 5815 5815 0

| '35 | 14n-e6E 248DD 68 10 5804 5815 -11

| 36 | 14neeE 258aD 69 10 5819 5823 4

| 37 | isne6E 25DAD 63 10 5809 5730 79

I 38 |ineE27B 81 14 5737 5782 45

[ 3 |[ianve7E22000 68 14 5733 5727 6

| 40 | 1sNe7E2DAC 59 15 5618 5621 3

[ 41 | isne7E26ca 63 15 5645 5658 -13

I 4 |i2Ne7m24ce 77 15 5801 5780 21

[ 43 | 1one7E 120cAA 78 16 5851 5796 ss |

| 4 |ineE13A 79 16 5892 5795 97 “

|| 45 | 12N-67E 24BBB 79 16 5791 5795 4

|| 46 | 12N-67E 24CDD 80 16 5824 5796 28 %i

| 4 | 1isnvemisces 73 14 5776 5779 3
48 | 13N-67E 15CDA1 73 14 5777 5779 2 Jl
49 | 13N-67E 22ADB 74 14 5788 5779 o |
50 | 13N-67E 26BAD 75 15 5787 5787 0 |
51 | 13N-67E 33DDA 76 14 5769 5773 4 4‘
52 | 13N-67E 34AAA 76 15 5808 5783 25

| s3 | 13N66E 25 75 10 5936 5833 103 ql
54 | 21N-66E 4B 22 8 6059 6068 9
55 | 23N-66E 19A 13 6 6380 6413 33|
56 | 23N-66E 31AB 15 6 6380 6368 12
57 | 23N-65E 10D 12 3 6620 6452 168
58 | 23N-66E 7C 12 6 6464 6445 |
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Figure 23.--Difference between actual and simulated water levels.

Table 12.--Comparison of Spring Valley model ground-water budget with USGS (Hood and
Rush, 1965, and Harrill et al., 1988) all values ac.ft./yr.

INFLOW:
RECHARGE 75,000 72,000
From: Tippett Valley 2,000 2,000

To: Hamlin Valley 4,000 4,000

Total: 74,000 74,000
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LOCATION DESIGNATION
Sections Within A Township Tracts Within A Section
R 14 W, Sec. 22
G 5 4 3 2 1
7 8 9 10 1" 12 b a
7| 18 17 16 15 14 13
11
e — T
S. '
10 | 20N 21 kz 23| 24 '
\ WHII. I~ b : 3
[}
30 | 29 28; 27\ 26 | 25 c m"-u--
AN '
b " a
Well |===Ce==m d
| 32| 3 Sd\\é\ 36 '/c:d".
]
! 6 miles AN } s //lmilo {

(9.7 hilometers) y‘\ r//(\.s kilometers) o

(v1-14)23dce o

Well and spring locations are designated with respect to the Mount Diablo baseline and

meridian as shown diagrammatically above. The first number within the parentheses

represents the township south of the baseline and the second number represents the range

east of the meridian. The section number follows along with the section 1/4, section

1/16th, and section 1/64th. The letter designations a, b, ¢, and d refer to the northeast, -
northwest, southwest, and southeast, respectively. If more than one well occurs within

the same 1/64th section, a numerical identifier is added to the end of the designation.

Thus (28-63) 27abal represents the first well of record in the northeast quarter-section

of the northwest quarter-section of the northeast quarter-section of Township 28 South,

Range 63 East, Section 27.
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APPENDIX C

STEADY STATE MODEL SENSITIVITY

A steady state simulation is a simulation in which recharge and pumping rates are held constant
with no change in ground-water storage, so that model-predicted ground-water levels are
representative of long-term stabilized ground-water conditions in the natural environment.
Therefore, the steady-state simulation will agree with historic measured water levels if
appropriate hydraulic parameters are used in the simulation model. Model hydraulic parameters
are adjusted until the steady-state simulation closely approximates the historical ground-water
levels. The adjusted parameters must be reasonable. Both the number of differing and
discernable values and the range of these values must be consistent with the occurrence of strata
which possess these properties and the estimated range, or variabilities of these properties, based
on field observations and testing of these properties of the strata.

The primary purpose of the steady-state simulations is to calibrate the model. Transmissivity
can be calibrated if sufficient water level elevations are known. This was done as a part of the
present study. Calibration of Spring Valley ground-water model was accomplished using several
constraints that were identified in the "Model Development" section of this report.

The calibration of the model was carried out so that the total quantity of ground-water flow was
matched, as closely as possible, the estimates made in Rush and Kazmi (1965) and Harrill et al.
(1988). The calculation of the recharge to the Spring Valley model resulted in a value equal to
that calculated by Rush and Kazmi (1965) although they rounded the 72,000 acre-feet to 75,000
acre-feet per year. The transmissivities of the modelled units, the leakance between these units,
and the conductances used in the general head boundary conditions that connect the modelled
area to adjacent hydrographic basins were constrained with the intent to replicate the quantities
of water reported in Rush and Kazmi (1965) and Harrill et al. (1988), while at the same time
matching the actual water levels.

As stated above, the calibration of the model was also carried out so that observed ground-water
levels and the gradient or changes between these levels within the modelled area were matched
as well as possible with little subjective changes in the model parameters. Fifty-eight wells were
used in Spring Valley for model calibration. With the number of wells and the areal coverage,
matching the actual water levels, while generally preserving the overall budget volumes became
the most significant constraint.

The ground-water levels in the wells shown in Table 1 and Table 11 of the report were used
during the calibration. The ground-water levels, resulting from the calibration are shown in
Figures 21 and 22, together with the observed ground-water levels.
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Model Parameter Sensitivities

Sensitivity simulations were done to determine the effects of each parameter on the ground-water
levels and flows and are reported in the attached Table 1. These parameters are the
transmissivities (L1T1, L2T1, etc.) and leakances (TK1, TK2). The sensitivities were
performed about the calibrated values of the model and represent the linearized change in water
level elevation that would occur with a change in the specific parameter value. The model rows
and columns for the observation wells are listed in the attached Table 1 as well as designated
in Table 11 in the report with each individual well for correlation. The sensitivities represent
the estimated change in ground-water level at the wells with a 100 percent increase in the
calibrated values that have been previously reported in the "Model Development" section of this
report. The results of these sensitivity simulations are discussed briefly.

Analyses of the sensitivity simulations resulted in several general observations regarding the
estimated model properties. All of the wells located in Spring Valley are in the alluvium. The
transmissivities of the alluvial, valley-fill aquifer and the lower carbonate aquifer produced the
most significant changes in ground-water levels and flows over the modelled area. The
transmissivity of the alluvial aquifer in Spring Valley fell within the range of transmissivities
resulting from aquifer tests preformed as part of the Los Angeles Water and Power’s study
(Leeds, Hill, and Jewett, Inc. (1983)) of the hydrology of Spring Valley. The high lower layer
carbonate aquifer transmissivities were necessary to move the water from the recharge areas to
discharge (ET and drains) areas and match existing water levels. Changes in the upper layer
volcanic and clastic aquifers and upper layer carbonate aquifer transmissivities and the leakances
between the layers did not produce significant changes in the majority of the ground-water
levels.
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Table 1.--Wells used in calibration.

RESULTS OF SENSITIVITY RUNS

il e b R R b B A A A A A
1 8N-68E 23BAC" 103 22 5762 5824 -63 -11 0 (1} 0 0 -2 =20 0
2 10N-67E TBA 90 11 5716 5780 -64 1 -1 0 1 0 0 -1 (1}
3 11N-66E 24BDA 86 10 5757 5780 23 (1} 2 0 0 -1 -1 2
4 11N-66E 1AAB 83 11 5788 5777 11 (1} 1 0 0 0 0 -1 2
5 11N-66E 23AB 86 10 5793 5780 13 0 2 0 0 -1 0 -1 -2
6 11N-66E 35DBA 88 10 5787 5775 7 2 -1 (1} 0 -1 -1 -2
7 9IN-68E 30AAA 99 18 5764 5808 -4 -6 -1 0 (1} 0 -1 -15 0
8 10N-63E 31CD 95 17 5800 5800 0 -3 -1 0 0 0 -1 -10 0
9 11N-68E 19CDC 86 18 5825 5808 17 -6 -3 0 1 0 -8 0

10 11N-68E 31CDC 88 17 5780 5796 -16 -3 -3 0 0 0 0 0
11 10N-67E 16AAB 91 14 5785 5788 -3 -1 -1 0 0 0 -1 -4 -1
12 10N-67TE 22AA 92 15 5854 5794 60 -3 -1 0 0 0 -1 -7 -1
13 10N-67E 23ACB 92 15 5772 5794 -22 -3 -1 (1} 0 0 -1 -7 -1
14 10N-67E 26BB 93 15 5825 5796 28 -3 -1 1 0 0 -1 -7 (1}
15 1IN-67E 13B 85 16 5793 5790 3 0 0 (1} (1} 0 0 -1 0
16 17N-67E 28A 51 13 5538 5548 -10 0 3 0 1 (1} 0 2 0
17 20N-67E 9BA? 30 13 5598 5751 -154 -8 -1 0 0 0 0 -5 0
18 16N-67E 18A 55 1 5560 5607 -38 -3 -9 0 3 0 0 -3 -1
19 18N-66E 1B 41 10 5580 55719 1 1 -1 0 0 0 0 0 (1}
20 17N-68E 7AB 47 17 5540 5552 -12 3 -1 0 1 0 0 5 0
21 16N-67E 3AAA 53 15 5581 5583 2 2 -8 0 0 0 -1 2 0
2 16N-67E 27DAD 57 15 5592 5609 -17 0 -6 (1} (1} 0 -1 2 2
23 18N-67E 1CCA 41 16 5552 5569 -17 5 -4 (1} 1 (1} 0 8 -1
3 19N-67E 13AAA 37 16 5574 5614 -40 14 -5 1 1 0 0 5 (1}
25 20N-67E 26ABB 33 15 5591 5685 -94 0 -1 (1} 0 0 0 0 0
26 12N-67E 8A 78 12 5730 5767 -37 -2 1 0 -1 0 0 -2 0
27 13N-67E 8ACA 7 12 5756 5769 -13 -11 -1 0 -1 0 0 -9 1
28 13N-67E 31DDC 7 11 5763 5798 -35 -6 0 0 -2 -3 -1 -7 -1
29 15N-66E 13D 61 10 5746 5711 34 4] -2 1 -4 -6 2 20 1
30 16N-66E 36DBA 58 11 5644 5620 24 2 -5 0 -1 2 0 -3 3
31 19N-66E 14AB 37 9 5657 5658 -1 -6 -4 (1} 2 0 0 -1 0
32 13N-67E 17DBA 3 12 5778 5773 5 -10 -1 0 -1 1 0 -8 2
33 13N-67E 18DCB 3 11 5799 5803 -5 9 0 1 -2 -3 -1 -16 -3
34 14N-66E 24AAB 68 10 5815 5814 0 -5 -1 1 -4 -7 =2 -26 -20
35 14N-66E 24BDD 68 10 5804 5814 -1 -5 -1 1 -4 -7 -2 =26 -20
36 14N-66E 25BAD 69 10 5819 5823 -4 -6 -1 (1} -5 -7 -2 =27 =21
37 15N-66E 25SDAD 63 10 5809 5729 79 -1 -1 1 -3 -6 =2 =21 0
38 12N-67E 27B 81 14 5737 5782 -45 -1 0 0 (1} 0 0 -1 -1
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Table 1.--Wells used in calibration (Continued).

RESULTS OF SENSITIVITY RUNS

il e ol e pe el e S A L A A S A
39 14N-67E 22CCC 68 14 5733 57127 6 -8 -1 0 0 0 -0 -6 2
40 15N-67E 2DAC 59 15 5616 5621 3 2 -5 ] 0 0 -1 2 2
41 15N-67E 26CA 63 15 5645 5658 -13 [} -4 [} -1 0 -1 -1 2
42 12N-67E 2ACB 77 15 5801 5780 21 -4 -1 [} 0 [} [} -6 0
43 12N-67E 12CAA 78 16 5851 5796 55 -7 -3 0 [} 0 0 -8 1
44 12N-67E 13A 7 16 5892 5795 97 -5 -3 [} [} 0 0 -7 0
45 12N-67E 24BBB 79 16 5791 5795 -4 -5 -3 0 [} 0 0 -7 0
46 12N-67E 24CDD 80 16 5824 5796 28 -4 -3 [} 0 0 0 -6 [}
47 13N-67E 15CBB 73 14 5776 5779 -3 -12 -1 0 -1 0 0 -9 2
43 13N-67E 15CDA1 73 14 5117 5779 -2 -12 -1 0 -1 0 0 -9 2
49 13N-67E 22ADB 74 14 5788 5779 9 -9 0 0 0 0 0 -8 1
50 13N-67E 26BAD 75 15 5787 5787 [} -11 -1 0 -1 0 0 -9 0
51 13N-67E 33DDA 76 14 5769 5773 -4 -3 0 0 0 0 0 -4 1
52 13N-67E 34AAA 76 15 5808 5783 25 -6 -1 0 0 0 0 -7 1
53 13N-66E 25A 75 10 5936 5833 103 -8 -1 0 ’ -4 -5 -1 -19 -13
54 21N-66E 4B 2 8 6059 6068 -9 -75 0 4 -12 0 0 -94 0
55 | 23N-66E 19A 13 6 6380 6412 -33 -43 0 -14 -9 1 0 -229 1
56 | 23N-66E 31AB 15 6 6380 6367 12 -54 0 -16 -13 1 -1 -215 1
57 | 23N-65E 10D 12 3 6620 6452 168 -56 0 -30 -14 0 -1 -252 0
58 23N-66E 7C 12 6 6464 6445 19 -53 0 -25 -14 0 -1 -249 0
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